Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and palaeobiologic implications

Christian de MUIZON
URA 12 du CNRS, Laboratoire de Paléontologie, Muséum national d'Histoire naturelle, 8 rue de Buffon, F-75231 Paris cedex 05 (France)

Muizon C. de 1998. - Mayulestes ferox a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and palaeobiologic implications. Geodiversitas 20 (1): 19-142.

Abstract

Mayalestes ferox is a borhyaenoid marsupial from the early Palacocene of Tiupampa (Bolivia). The holotype and only known specimen is a partial skeleton which is described and discussed below. Mayulestes ferox is a member of the family Mayulestidae, a taxon which also includes the species Allookirus australis from the same locality and age, but which is only known by a few isolated molars. Mayulestes and Allqokirus are the two oldest known borhyaenoids. Mayulestes differs from Allqakirus in the morphology and proporrions of its molars. A major feature of the molars of, both genera is the reduction of the entoconid which is regarded here as a synapomorphy of the Mayulestidae. Mayulestes has the plesiomorphic marsupial dental formula (15/i4: $\mathrm{C} 1 / \mathrm{c} 1 ; \mathrm{P} 3 / \mathrm{p} 3$; $\mathrm{M} 4 / \mathrm{m} 4$) and its molar morphology approaches the plesiomorphic marsupial cheek tooth patrern. Mayulestes ferax does not have a tympanic process of the alisphenoid, a structure whose presence is generally regarded as as marsupial synapomorphy. Comparison with ocher borlyaznoid taxa indicates that the lack of tympanic process of the alisphenoid is in fact a plesiomorphic character state for the superfamily, and it is suggested that this feature appeared several times during marsupial evolution. The ear region of Mayulestes bears a conspictoous medial process of the squamosal and there is a shallow cavity (the roof of the alisphenoid sinus) between the foramen ovale and the glenoid cavity, excavated within the squamosal anteriorly, the periotic posteriorly, and the alisphenoid berween. The contribution of the squamosal to the roof of the alisphenoid sinus is regarded as the key synapomorphy of the bothyaenoids. Other borhyaenoid synapomorphies are: the loss of the prootic canal, the reduction and the loss of the anterolateral process of the maxilla, and the probable loss of epipubic bones. The postcranial skeleton of Mayulestes is represented by twenty complete or partial ventebrae, a few ribs and most major limb bones. A comparison with living didelphids. I'ucadelplys, other borhyaenoids, and several arboreal (or probably arboreal) mammals such as sciurids, tupaiids, procyonids, multituberculates morganucodontids, triconodontids, and Henkelotherium reveals that many features of the postcranial skeleton of Mayulestes are indicative of

KEY WORDS

Marsupialia, Borhyaenoidea, Palaeocene, Bolivia, phylogeny, functional anatomy.
arboreality. These traits are: probable pechensility of the raili posterodorsally extended posterodorsal angle of the scapula; anteriorly and distally projecred acromion: Jow tubectes of the humerus; circular shape of the head of the humerus; large size of the epicondyloid ridge and distomedially protruding medial epicondyle of the humerus; deep flexor fossa on the medial side of rhe olecranon of the ulna; morphology of the McV; great mobility of the hip attested by the shallowness of the acerabulum and the strong development of the femoral trochanters; sigmoid shape of the tibia and morphology of its distal arricularion; shape and orienration of the ecral facet of the calcaneum; large size of the peroncal process; transversely compressed tuber calcanci. Several orher fearures (size of the nenral spine and transverse process of the lumbar vertebrae; morphology of the zygapophyses of the last thoracics and lumbar verrebrae; long, ameriorly bent olecranon of the ulna; eversion of the iliac wing; relative depth of the femoral trochlea; flatened disral epiphysis of the tibia; great length of the tuber calcanci) indicate that Mayntestes was a relatively agile, scansorial animal capable of bounding. Maynestes is regarded as a partially arborcal predaceous mamnal capable of bounding and of some relatively fasr bur shorr suns. Mayulestes was certainly fairly agile and could have had an ecological niche close to that of weasels or martens, although more arboreal than rhe former. Several arborcal fearures of Mayulestes are also found in Pucadelphys, a didelphid marsupial from the same locality. Consequently, this genus is also regarded as partially arboreal, although to a lesser extent than Mayulestes. The fact that rhe two oldesr skeletons of Amcrican marsupials denotc arboreal habirs reinforces the hyporhesis that arboreality is probably a symplesiomorphy within marsupials.

RÉSUMÉ

Mayulestes Ferox, un Borliyaenoidea (Metatheria, Mammalid) dtt Paléocìne inférieur de Bolivie. Implitations phylogènétigues et paléobiologigues. Mayulestes ferox est un marsupial Borhyacnoidea du Paléocenc inféricur de Tiupampa (Bolivic). L.'holotype et unique spécinen connu est un squelette partel comprenanr le cràne compler, la mandibule incomplète et la plupart des os des membres, lesquels sont décrits et discutés ci-dessons. Mayulestés feroxex est un représentant de la famille des Mayulestidae, un taxon qui inclur également l'espèce Allqokurus australis, provenant de la mếme localité et du même âge, mais connue uniquemenr par quelques molaires isolés. Mayulestes et Allqukirus sont les deux plus anciens Barhyaenoidea connus. Mayulestes differe d'Allqokirus par la morphologie et les proporrions de ses molaires. Un caractère important des molaires des deux genres est la réduction de l'entoconide qui est considérée iei comme une synapomorphic des Mayulestidae. Mayulestes possède la formule dentaire plésiomorphe pour Ics marsupiaux ($\mathrm{I} / \mathrm{i} 4$; Cle ; P3/p3; M4/m4) et la morphologie de ses molaires est proche du patron plésiomorphe des denrs jugales de marsupiaux. Mayulestes férox ne présente pas de processus tympanique de l'alisphénoïde, une strucrure dont la présence esr généralemenr considérée comme une synapomorphie de marsupiaux. Des comparaisons avec les auttes taxons de borhyénoïdes indiquent que l'absence de processus tympanique de l'alisphénoïde est en fait une plésiomorphie pour la superfamille, et il esr émis l'hypothèse que ce caractère est apparu plusieurs fois au cours de l'évolurion des marsupiaux. Le squamosal de Mayulestes présente un processus médial bien développé. Dans la région

MOTS CLÉS

Marsupialia, Borhyaenoidea, Palćocène, Bolivie, phylogénie, anatomic fonctionnelle.
auditive, entre le foramen ovale et la cavité glénoïde du squamosal, on observe une cavité peu profonde (le toit du sinus alisphénoíde), creusée dans le processus médial du squamosal antéricurement, dans le périotique postérieurement et dans l'alisphénoïde entre les deux. La participation du squamosal à la constitution du toit du sinus alisphénoïde est considérée ici comme la principale synapomorphie des Borhyaenoidea. Les aurres synapomorphics dc la superfamille sont la perte du canal prootique, la réduction et la perte du processus antérolatéral du maxillaire et la perte probable des os épipubiens. Le squelette post-crảnien de Mayulestes est connu par une vingtaine de vertèbres complères ou partielles, quelques côtes, et par la plupant des principaux os des membres. Une comparaison avec les didelphidés actuels, Pucadelphys, les autres Borhyaenoidea et plusieurs mammiferes arboricoles (ou supposés arboricoles) tels que les sciuridés, les tupaidés, les procyonidés, certains multituberculés, morganucodontes, triconodontes et Henkelotherium révèle que beaucoup de caractères du squelette post-crảnien de Mayulestes indiquent un mode de vie arboricole (queue probablement préhensile ; angle postéro-dorsal de la scapula ériré postéro-dorsalement ; acromion projeté antérieurement er distalement : rubercules de l"huméruş relativement bas; forme circulaire de la tête de l'humérus; grande taille de la crête épiconylienne er projection disto-médiale de l'épicondyle ; profonde fosse des fléchisseurs sur la face médiale de l'olécráne de l'ulna; morphologie du McV ; grande mobilité de la hanche atrestée par la faible profondeur de l'acétabulum et le développement des trochanters fémoraux ; forme sigmoïde du tibia et morphologie de son articulation distale ; forme er orienration de la facette ectale du calcanéum ; grande taille du processus péronéen et tuber calcanei comprimé transversalement). Plusieurs autres caractères (taille de l'épine neurale et des apophyses transverses des vertèbres lombaires ; morphologie des zygapophyses des dernières vertèbres dorsales et des lombaires : olécrâne de l'ulna, long er recourbé antérieurement ; éversion de l'aile de l'ilium ; profondeur relative de la trochlée fémorale ; épiphyse distale du tibia aplatie antéro-postérieurement et grande Iongueur du tuber calcanei) indiquent que Mayulestes étaị un animal relativement agile, capable d'adopter une démarche rapide et de bondir. Mayulestes est interprété comme un prédateur partiellement arboricole capable de bonds et de course rapide mais de courte durée. Mayulestes érait cerrainement assez agile er a pu avoir une niche écologique voisine de celle des martres et des belettes actuelles. Plusieurs caractères arboricoles de Mayulestes sont aussi présents chez Pucadelphys, un marsupial didelphidé provenant du même gisement. En conséquence, cette forme est également interprétée comme étant partiellement arboricole, bien qu’à un degré moins poussé que chez Mayulestes. Le fait que les deux squelettes les plus anciens de marsupiaux américains possèdent des caractères liés à l'arboricolie renforce l'hypothèse selon laquelle ce mode de vie est probablement une symplésiomorphie chez les marsupiaux.

INTRODUCTION

Borhyaenoids are highly carnivorous South American marsupials which are known from the early Palaencene to the late Pliocene. The remains are generally isolated teeth and jaws but. although uncommon, some complete or partial skeletons are known. The major collection is that described by Sinclair (1906) which consists of several partial skulls and skeletons obtained from the Santa Cruz beds (middle Mincene) of l'aragonia. The specimens are placed in four taxa: Borbyaerna tuberata, Prothylacynus patagonicus. Cladosictis patagonicus, and Sipalocyon gracilis. Several other skulls ol Prothylacynus and Cladosictis from the Santa Crus beds are known and have been figured (although not described) by Marshall (1979a, 1981). In Columbia, the "Monkey unit" (late Miocene) of the Honda Group from the upper Magdalena Basin has yielded a complete skeleton of Lycopsis longirostris (Marshall 1977a). In Catamarca Province (Departamento de Betén), the Monthermosean beds of the Coreal Quemado Formation have produced two partial skeletons of Thylacostrilus atrox (Riggs 1934). No skeletons are known from the Palaeogene and the only skulls ate those from the Deseadan (late Oligocenc-early Miocene) beds of Salla-Luribay (Bolivia) referted to Sallacyon boffietteri and Paraborbyatha boliviana (Petter \& Hoffstetter 1983) and an undescribed basicranium referred so Notograle under study by the author. Borhyaenoids from the Early 'lertiary are rare and no complete skulls and/or partial skeletons have been found in the Palacogene. This state of things drastically enhances the importance of the discovery of a partial skeleton of borhyaenoid (Mayulestes ferax) from the early Palaencene of the Santa Lucla Formarion at Tiupampa (Muizon 1994), which is one of the two oldest known borhyaenoids and probably one of the most complete specimens known in the whole superfamily. The other oldest borhyaenoid is Allqokirut australis from the same localicy and age as Maybulestes, but known by a few teeth only. There are more than 40 Ma berween Mayulestes ferox and the Santa Cruz bothyaenoids skeletons, more than berween the Santacruzian and the last borhyaenoids (approx. 15 Ma).

In a more general context, skull and skeletons of fossil marsupials in the Early Tertiary are extremely rare and the only other marsupial skeleton known from the Palaeocene is that of Pucadelphys andinus from the same locality (Marshall \& Muizon 1995; Marshall \& Sigogneau-Russell 1995). Asiatherium reshetoni from the Late Cretaceous of Mongolia (Trofimor \& Stalay 1994; Szalay \& Trofimov 1996) is the only Mesozoic metatherian known by a fairly complete skeleton, "This form is regarded here as a crue metatherian, although its very specialised teerh may lead some authors to question its membership in Metatheria. These facts, therefore, saise the importance of Mayulestes at the level of Metatheria and. considering the scarcity of early Palacocene and Late Cretaceous mammals, the discovery of the skeleton of Mayulestes ferme represents a major event in the knowledge of early manimals.
'I'he description and interpretation of the skull and the postcranial skeleton of Mayulestes ferox are presented below. As is generally the case, it is the skull that provides most of the information on the phylogeny of borhyaenoids and marstupials while the postemnial skeleton is more informative on the locomotion and habitat of Mayulestes, although the latter also bears some interesting data on mammal evolution.

Abbreviations
AMNH American Muscum of Natural History, New York, USA;
DGM Divisão de Geologia e Mineralogia do Departamento Nacional de Produção Mineral, Rio de Janeiro, Brazil;
FMNH Field Museum of Natural History, Chicagro USA:
MHNC Museo de Historia Natural de Cochabamba, Cochabamba, Bolivin:
MNHN Muséum national d'Histoire naturelle, Paris, Prance:
ML.P Museo de La Plara، Lil Plata, Argentina;

YPFB Pal Paleontology collecrions of Yacimientos Petroliferns fiscales de Bolivia, Santa Cruz, Bolivia;
YPMPU Yale Peabody Museum, New Haven (excollections of the Princeton University), USA:
USNM United States National Museum of Natural History, Washington D. C., USA.

SYSTEMATIC PALEONTOLOGY

Legion TTRIBOSPHENIDA McKenna, 1975
 Infraclass METATHERIA Huxley, 1880
 Suborder DIDELPHIMORPHIA (Gill, 1872)
 Infraorder SPARASSODONTA
 Ameghino, 1894

Superfamily Borhyafnolidea Ameghino, 1894
Dagnosis. - Camivorous marsupials with a midde ear epitympanic sinus located anterolateral to the promontorium and formed by the alisphenoid anteriorly (and somecimes ventrally), ile peirosal posteriorly, and the squamosal laterally. The Rorhyanoidea are the only known metathertians where the squamosal participates in the compusition of the alisplenend sinus and this Feature repesens the key synaponorphy of the Burlyasmoded Winthermore, the superfamily is also diagnosed by the reduction and the loss of the anterolaterat process of the maxillit which form the lateral watt of ble fessa for the lower anine on the skull, the lose of the prootic canal ba characier sare found in some other linenges of marsupials), and, possibly, the loss of the epipubie bones (only probable in four genera, Mayulestes. Cladosidts, Frotbylucynus and Lycopsis, a fealure unknown in oher hasa).

NOTA. - Bnthyaenoids allso present the hypercarnivorous dental finctional complea related we the post-vallum-prevallid shear (reduction and loss of metaconid and entoconid. werease in size of paraconid, reduction of alonid, reduction of protecone, paracone and stylar shelf. increase in sire of metacune and mecastyliar crest). Hewerer, as shown by Archer (1982). Fox (1945) and Muizon \&2 lange-Badra (1997), this functional complex is a highly lomoplastic feature which appears independently in sereral group of mammals and within these groups. Therefore, if it is true that this synapumorphy diagnoses the Borhyamoidea, it has a low phylogenetic value and certainly cannot represent a key synapomorphy of the Borhyaenoidea.

Family Mayulestidae Muizon, 1994

Diagnosis. - Borhyaenoidea diagnosed by an important reducrion of the entoconid and the resulting lingual opening of the ralonid basin.

Typf genus. - Mayulestes Muizon, 1994.
Included genera. - Mayulestes Muizon, 1994; Allqokirus Marshall et Muizon, 1988.

Genus Mayulestes Muizon, 1994

Type species. - Mayulestes ferox Muizon, 1994.
Diagnosis. - The same as the only species referred to Mayulestes.

Mayulestes ferox Muizon, 1994
Diagnosis. - Mayulestes ferox differs from Allqokirus australis in the smatler L / W ratio of its upper molars, in the greater depth of the ecenflexts, in die larget stylar cusp I) with a low lingual eresr which runs towatds the lingual extremity of the menacrista, in the meracrista which does nor overhang the base of the crown posteriotly, in the straight posterior edge of the upper molass, in the more robust and lnnger protocone, and in its narrower and more slender lower molars.

NoIA. - Since the only other species of the family (Allyokirus australis) is known by upper and lower inolars anly, the diagnosis ol Mayatestes ferox refers to molar mophology only.

Holotypl: - MHNC 1249, a parvial skeleton with almost complere skutl: right heminandible lacking the verrical ramus. p2 and p3: lefi hemimandibla lace king the verrical ramus, portion of the horizontal ramus anterior to the posterior root of p 2 , and the trigomid of m.3: adas lacking the ventral arch; axis; centram of the ?hirit cervieal verchatat efith cervical vertebra lacking the neural arch; centra of rwo anerior thoracic vertebraes one complete anterior thoracic veriebras two last thoracie verrebrae; five first lumhar vertebrae whth 14 lacking mose of the neural arch; two anterior cauda! vertebrae: two posterior caudal vertebrac; two anteriot ribs: two median ribs; right scapula, almost complete; borth humeri; compleve lefe ulna; proximal extremity of the right ulna; lelt radius; right unciform; lefe Mclll and Vileft innominate lac. king the antcroventral part of the pubis; past of the right immoninase (acetabulum and posterior portion of the ilium); left femur lacking part of the diaphysis and the medial distal condyle, right femur lacking part of the greater trachanter and part of the diaphysis; right ribia; distal extremiry of the right fibula; right calcancum: distal extremity of the left calcaneum; lefi MrIII and IV.

Hyuodgin. - Type specimen only.
LOCAlity, bORIzON AND AGH. - The specimen was collected on the site 1 ("ilee quarry"), at the locality of Tiupampa, situated about 95 km southeast of Cochabaniba (Mizque P'rovince, Department of Cochabamba, Bolivia). Site 1 (see Gayet et al. 1992; Muizon \& Marshall 1992; Marshall et al. 1995 for
locality map) at Tiupampa has yielded an abundant vertebrate fauna of the Santa Lucia Formation.
The vertebrate fauna includes: Osteichrhyes (Dipnoi. Telesorei), Amphibia (Anura, Gymnophiona), Reptilia [Chelonia, Squamata (Lacertilia and Ophidia), Crocodilia], and Mammalia.
An updated liss of the naanmal fauna is given below. Suprafamilial classification of marsupials follows Szalay (1994) and Sparassodonta are regarded as an infraorder of the suborder Didelphimorphia, Following Muizon et al. (1997). The wher Didelphimorphia are included in the new infraorder Didelphodonta:

Class MAMMALIIA

Infra-class METATHERIA
Order DIDELI'HIDA
Suborder ARCHIMETATHERIA
Family Peradectidal
Peradectes cf austrinum
Suborder SUDAMERIDELPHIA
Family Caroloameghinudae
Roberthoffstetterit nationalgrographica
Suborder DIDEITHIMORPIHIA
Inframder DIDLLPHODONTA new
Family Pucadelphidae new
Pucadelphoys andinus
? Andinodelphys cochabambensis
Family ? Dufirfilsae
Incadelphys antiguas
Mizquedelphys pilpinensis Tiulordia floresi
Family Jaskhabel peydae
Jaskhadelphys minutus
Infraorder SPARASSODONTA
Family Manilestroae
Mayulestes ferm:
Allqukinus australis
Order GONDWANADELPHIA
Suborder MICROBIOTHERIA
Family Microbiotheridae
Khasia cordillierensis
Infra-class EUTHERIA
Order LEPTICTIDA Family Palatorinctidae?
Cf. Cimolestes sp.
Family indet.
Gen. and sp. inder.
Order PAN'IODONTA
Family Alcidedorbignyidae
Alcidedorhighy inotinata
Order CONDYLARTHRA
Family Miotiafindae
Molinodus shareal
Tiucharnus minutus
Tiuclaturs n.sp. 1
Tiuclaenus n.sp. 2
Pucanodus gagnieri

Family Mioclaenidae or Didolodontidae
Mioclaenidae or Didolodontidae n.g., n.sp.
Andinodus boliviensis
Family ? Periptychidae
aff. ? Mimatuta
Order CONDYLARTHRA incertae sedis
Family Kol.ıpanidae
Kollpania tiupampina
Order Notoungulata
Family Henricosbornidae or
Oldfiethomasidae
The age of the fauna is now commonly accepted to be Palaeacenc (Gayer et al. 1992: Muizon 1992; Muizon \& 1. Briso 1993; Marshall et al. 1995) contrary to the Late Cretaceous age initially assigned to the Tiupampa mamınals (Marshall et al. 1983; Muizon et al. 1983: Marshall at al. 1985; Marshall \& Muizon 1988).
'The position of' the 'Tiupampa (site 1) mammal launa within the Palacocene has been discussed by Van Valcu (1988), Muikon \& I, Brito (1993), Bonaparte et al. (1993), and Marshall et al. (1995) and assigned an early Palacocene age. According to these aurhors, the Tiupanpian (carly Palacocenc) local manmal fauna (type locality: site $]$ at Tiupampa) is older than the Peligran local mammal fauna (type locality: Punta Peligro, Patagonia, Argentina) (Míizon \& 1. Brito 1993; Bonaparte at al. 1993: 36, 37. Bonapatte \& Morales 1997). The relative age of the fannas is based on the comparison of the evolutionary stage of the condylardss they have yielded. Although this approach is cerrainly questionable, it is obvious that the alaree condylarths of the Punta Peligro fauna are more derived than the relatively generalised forms of Tiupampa (six genera). Furthermore, a new ungulate from Punta Jeligro (Bonapatte \& Morales 1997) shows a cleady prelophodant motphology which recalls, although more primitive, Notorychops from the Rio Loro Fornation of northern Argentina (Soria 1989). The Punta Peligro fauna has becn found in the Bances Negro luferior and its age is early Palacocene. It probably spans from 63.2 to $61.8 \mathrm{Ma}_{4}$ as stared by Pascual \&C Ortiz-Jaureguizar (1992: 564), who provided a review of the age of the Bances Negis, liferior. The Tiupampa local fauna is here regarded as older than the Punta Peligro fauna and, therefore, if the date of the base of the Banco Negro inferior is correct. the Tiupampa fauna is older than 63.2 Ma . Thereforc, according to Haq \& Van Eysinga (1994), it would be pre-Torrcjonian in age and contemporancous with the Pucrean. The Punta Peligro fauna is probably contemporaneous with the Torrejonian of North Anerica, I therefore agree with the gross equivalence, proposed by Bonaparte et al. (I993), of the Tiupampian with the Puercan and the Peligran with the Torrcionian.
Recenty, Marshall et al. (1997) and Sempere et al. (1997) have correlated the Tiupampa beds to the
magnetic anomaly chron 26 which would correlate the Tiupampian land mammal age with the early Tiffanian North Americaat land mammal age (i.e. carly late Palacocene). However, the pantodonts and condylaths (goups that can be compared in both subcontinents) of the 'Tiffanian faunas of Notth America are much mote derived and more diverse than those of Tliupampa and clearly seem to represent a younger fauna. Furthermore, since the entite series of the Santa Lucia Formation at Tiupampa cortesponds to a (possible?) single reversed chton, the eeptelation of the Tiupanapa beds with the other Mastrichtian-Palatocene series nf Bolivia (La Palca, see Matshall et al. 1297) has been based on lithological facies and sedimentological sequences. Marshall et al. ([997) include the mammal hearing beds al Tiupampa in the middle sequence of the Santa Lucia Fotmation, which they have cortelared with the last sequence of the underlying El Molino Formation to the chron 26. However, the authors have net presented the sedimentological arguments which allow she suggesed correlarion and the sedimentology and depositional environment at Tiupampa are neither described nor discussed. Furthermore, some basic considerations setiously weaken the correlation proposed by Marshall er at, (1997) and Sempere et al. (1997): (1) the Tiupampa series is located on the edge of the El Molino-Santa Lucia Basin and therefore the sedimentation talay be atypical and may have very local characteristics; this observation obviously makes cortelations based on sedimenological dara very lavardous; (2) the Tiupampa beds were deposied on an alluvial plain, an enviromenens which is generally characterized by an irregular rate of sedimentation; (3) several palcosols with rout casts have been mentioned ar Tillpampa (Muizan ob al. 1983) which could correspond to important interruptions in the sedimennation. For example, the single reversed interval of Tiupampa could very well correspond to chron 27 r and 26 r with lack of sedimentation, or erusion of sediments cortesponding to chron 27 n. Since no tadionteric dates are available, so far, at Tiupampa, this difficulty cannor be resolved; (4) although considerably improved during the last fifteen years, the knowledge of the Lare Crenaceous and Pabseosence of Bolivia is still very incomplete, a statement to which must be added genersl considerations concerning the arriability of the rates of sedimentation and the great ditficulty in devermining the importance uf sedimenarion gaps.
Furthermore, at Vila Vilatat about 5 km east of T"upampa, in the same outerop, a Maastrichtian fish fauna (Gayet at al. 1992: 400) indicates the presence of Maastrichtian beds of the El Molino Pormation (probably belonging to the lowet sequence of the formation). Those beds have a facies of mainly thick red sandstones corresponding to a more dettiral sedimentation, uncommon for the El Molino Formation and probably indieative of the local border of the basin,
which could explain the atypical facies found at Vila Vila and "pupanpa.
In spite of Marshall et al. (1997)'s claim of having the only acceprable approach to the relative chronology, the correlation they suggested of the Tiupampa bods to the eatly [iffanian is still weakened by mumerous unknowns and appoximatons. Their age assignmenz is certainly not convincing (as far as the mammal fauna is concerned) and, in spite of the appearances of a rigorous quantitative analysis, it is nor note objective than a famistic approach, which. as mentioned above, prescints the uncettaintics shat everybody knows. Marshall 16 al. (1997) may bc correct (alhough it would be extremely surpising) in assigning a Tiffanian age to the T"upampa beds, however they failed to demonsuate it.
Therefore, on the basis of faunistic comparisons, the age cotrelation of the Tiupampa mammal fauna to rhe luercan is srill accepred here, following Van Valen (1988), Bonaparte et al. (1993), Muizon \& I. Brito (1993), Marshall et al. (1995) and Bonaparte \& Motales (1997).

DESCRIPTITON

Serial designation for teeth follows Luckett (1993) contra Archer (1978), Hershkovitz (1982), Marshall \& Muizon (1988) and Muizon (1992), i.e. premolars ate P1, P2, P3; deciduous tooth is dP3; permanent molars are M1, M2. M3, M4; terminology for molar structure follows Marshall \& Muizon (1995); usage of Metatheria follows Szalay (1994) and Sralay \& Trofimov (1990); usage of Theria follows KielanJaworowska ct all. (1987), and 'Tribosphenida follows McKenna (1975); suprageneric ranks of Metatheria follow Marshall et al. (1990). All measurements are in millimetres (mm).
Abbreviations of teeth are as follows: c, Jower canithe: C, upper canine; i, lower incisor; I, upper incisots, m , lower molar; M , upper molar; p, lower premolar; 1?, upper premolar.
Anaromical elements are described in the following order: upper dentition, lower dentirion, skull, dentary, vertebrae, forelimb and hindlimb. When necessary to the understanding of the text, the description will include some comparisons, mainly with the other borhyaenoids and/or with didelphids. In the following deseription of the dentition of Mayulestes ferox, comparisons will be made essentially with two borhyaenoids
(Allqokirus austrulis from the same locality and Patene simpsoni from the early late Palaeocene of Brazil) and with Deltatheridium pratrituberculare, a tribosphenidan from the Late Cretaceous of Mongolia.

Skuli

The dental formula of Mayulestes ferox is the complete primitive marsupial formula: 15/i4; C/c; P3/p3; M4/m4 (Owen 1868, but see also Luckett 1993),

Upper dentition

Upper incisors. (Fig. 1) The number of upper incisors is not reduced to four as in other borhyaenoids. However, it is noteworthy that the number of incisors is unknown in Allqokirus, Patene and Nemolsstes, three other Palacocene borhyacnoids. The incisor thoth row is parabolic and differs from the straight (or slightly concave posteriorly) sow observed in Miocene borhyaenoids (Clatosictis, Sipalocyon, Protbylacynus, Acrocyom). In the holotype of Mayulestes, the left I1 is not preserved and the crowns of the left I2 and right 13 are broken. 11 is the largest incisor. In diameter of the crown $\mathrm{II}>\mathrm{I} 2<\mathrm{I} 3>1 \mathrm{~A}>\mathrm{I} 5$. The crown of 11 is conical, slightly recurved posteriorly and approximately twice as high as wide at the base. The apex of the crown of 12 is broken; this tooth is the second smallest upper incisor in diameter, The section of the crown is subcircular, slightly flattened labiolingually. The
anterior base of the crown is protruding anteriarly. The 13 has a much lower crown than the 11 ; it is triangular in labial vico and clearly flattened labiolingually. The crown of 13 is protruding anteriorly and posteriorly slighly below the junction with the root, The mesiodistal diameter of the crown is only slightly smaller than its height. The 14 has a much smaller crown than the 13. It is triangular in labial vicw. Its maximum mesiodistal diameter is also locared below the crown-root contact but, contrary to 13, it is slightly latger than the height of the crown. The 15 is the smallest of the upper incisors. The crown is conical and not constricted at the contact with the root. The labial edges of the alveoli of $11-4$ ate at the same level while that of 15 is situated a little more dorsally at the anterior redge of a large premaxillomaxillary fossa for the lip of the lower canime. There is no true diastema, although 11-4 are not as close to each other as 14 and 15 . 1 distince diastema separates 15 from C.
Upper canine. (Fig. 1) The tooth is large, pointed and slender. It is complete on the right side only where it has been partially expelled from its alveolus during fossilization. The righ C therefore appears to be longer than it probably was on the living animal. The crown is less than half of the length of the obscruable portion of the tooth. It bears an important anterior wear facet for the lower canine, which contintes darsally on the root. In cross section, the tooth is ovoid, being

FIg. 1. - Mayulestes ferox, holotype (MHNC 1249). Anterior part of the palate with incisors canines and anterior premolars. Scale bar: 1 cm .
longer than wide ($1: 4.9 \mathrm{~mm}$; w: 1.9 mm). The tooth is recurved posteriorly but to a lesser extent than in Pucatelphys, as the tip of the crown is anterior to the level of the posterior edge of the alveolus. It approachers the condition observed in Sipalocyon, although it is approximately 40% smaller.
Upper premolars. (Fig. 2) The three upper premolars of Mayulestes are donble-rooted. The size of the teeth increases from ['] $10 \mathrm{P3}, \mathrm{P}]$ is considerably smaller than the other premolars. The difference in size between P1 and P2 is more importanr rhan in other borhyaenoids and Pucadelphys but approaches the conclition observed in Deltatheridium, P1 has a tiny singlecusped asynmetrical crown, In labial view, its posterior edge is strongly oblique (in relation to the alvcolar border) and rectilincar while the anterior edge is subvertical and convex anteriorly. At the base of the postcrolabial edge of the crown is a minute cospule. P^{n} is set slightly obliquely in the maxilla, as observed in Pucadelphys (Marshall \& Muizon 1995) and Andinudelplys (Muizon et al. 1997). However, the obliquity of the left P1 has probably heen increased by the deformation due to fossilization, The crown of the P 2 is triangular and longer than high in labial view. In occlusal view, it is flattencd transversally. It presents a small cuspule at its anterior base and a conspicuous cusp at irs posterior base. The apex of the crown lies ventrally below the posterion edge of the anterior root. The cristae running from the apex to the basal cusps are straight and the posterior is longer than the anterior. The P3 is the highest of the cheek-teeth. It is a little longer than P2 and much higher. The difference between the proportions of P2 and P3 is more important in Mayultestes than in Pacadelphys and the other borhyaenoids but resembles the condition abserved in Deltatheridium. The crown of the 1'3 is clearly higher than long, as in Pucadelpbys, Pateme and Sipalocyon. The anterior edge of the crown is a smooth crista, convex anteriorly and possessing a small heel at its base. The posterior edge is a well marked crista. concave posteriorly with a well-defined cusp at its base. The apex of the crown lies ventrally to the anterior edge of the posterior root and, in lateral view the crown is
slightly recurved posteriorly. On P2 and P3 there is a small posterolabial cingulum which disappears anteriorly.
Upper molars. (Fig. 2) In the only specimen known, the molars are slightly worn but the dental morphology is clearly recognisable. In lengith, $\mathrm{M} 1<\mathrm{M} 2>\mathrm{M} 3>\mathrm{M} 4$ and in widrl $\mathrm{M1}<\mathrm{M} 2<$ M3 $>$ M4 (Table 1). The molars of Mayulestes are relarively shorter anteroposteriorly than in Allqukizus and Patene. On M1-3 the protocone is relatively large for a borhyaenoid but narrow anteroposteriorly and slightly inflated basally, especially on its posterior side: In Allqokirus, a borlyamoid from the same locality, the pratocone is even shorter anteroposteriorly and nor inflated basally; the protocone of Mayulestes is shorter than in Patene. The protocristae are straight; the preprotocrista is slightly shorter than the postprotocrista and, as a consequence, the apex of the protocone is located in an anterior position on the cusp. The trigon is well basined. "The conules are small but well marked; they" are distinctly V-shaped and well separated from the paracone and meracone as observed in Allyokirus. Because of the slight wear of the teeth it is not possible to determine with certainty the relative size of the conules. A distince paracingulum unites the preparaconule crista to the stylar cusp A. In fact, the paracingulum is continuous with the preparaconule crista as in Allgokirus and Patent: The para- and metacone are well-developed, well separated and constitute the central cusps of the molars. The metacone is slightly compressed transversally, this being particularly obvious on M3 as in Allgokirus. It is distinctly larger in height and volume than the paracone. In occlusal view, the paracone is approximately 30% shorter and narrower than the metacone. On the four molars the paracone is more worn than the metacone and on M3 the paracone is relatively worn while the metacone is alnost. unworn. In spite of this, the difference in height of the two cusps is so important that it is clear that the paraconc was lower than the metacone. The centrocrista is straght in occlusal view. In labial view, the centrocrista is dceply V-shaped and presents a notch at the junction point of the premetacrista and postparacrista. From this point, the highest of the centrocrista, a deep
groove runs labially dividing the stylar shelf transversally but nor reaching the labial cingulum. The same condition is observed in Allqokirus and, to a lesser extent, in Patene. The preparacrista links the paracone to the stylar cusp B. It is transverse, almost perpendicular to the centrocrista. On M1-2, it is slightly concave posteriorly. On M3-4, it is slighty worn but it seems that it was almost straight. It is distinctly concave ventrally in anterior view. Its length increases from MI to M4 where it is almost three times longer than on M1. The postmetacrista is well-developed and relatively long but fairly low. It is approximately twice as long as the preparacrista on M1-3. It is almost straight in occlusal view and slightly concave in posterior view. On M1, it fotms an angle of approximately 45° with the anteroposterior axis of the skulls: this angle increases on M2 and it reaches almost 80° on M3. Posterior to the preparacrista and anterior to the postmetacrista, the syylar shelf bears two elongated fossae directed posterolabially and anterolabially y_{7} respectively. Similar structures are observed in Allqokirus and Patene. The stylar shelf is similar to that of Allqokirus but it is
larger and deeper than in Patence. It differs from the condition in other borhyaenoids, where the stylar shelf is either very reduced or, generally, totally absent. Its width increases from M1 to M3. The stylar cusps are relatively well-developed with the exception of stylar cusp C , which is absent. Stylar cusp A is medium-sized on M1-2 and distinctly lower than stylat cusp B. The two cusps are connate but easily discernible. On M3, stylar cusps A and B have the same height and are connate but not totally fused. On M4 they are fused. The stylar cusps A and B of Patene are smaller than in Mayulestes but their relative size and relationship are similar. The srylar cusps A and B of the M3 of Allqokivus (the only molar known) are similar to those of Mayulestes. As mentioned above there is no stylar cusp C in Mayulestes as in Allqokirus and Patene. In these three genera, there is a distinct labial cingulum in the srylar cusp C position. The stylar cusp D is well-developed in Mayulestes, concrary to Allgokirus where it is very small and Patene where it is absent. In Mayulestes, a small crista runs lingually from the cusp within the basin of the stylar shelf, but does not reach the postmeta-

Fig. 2. - Mayulestes ferox, holotype (MHNC 1249). Left upper molars and premolars: A, occlusal; B, labial views. Scale bar: 5 mm.
crista or the metacone. This crista is absent in Allookirus and Patene. The stylar cusp E is small as in most marsupials and in fact constitutes the labial extremity of the postmetacrista. On M1-3 the ectoflexus is very deep and its depth increases from M1 to M3. It is deeper than in Allqokirws and much deeper than in Patene and Sallacyon. An ectoflexus is absent or extremely reduced in the other borhyaenoids.
The M4 is very shote anteroposteriorly (much shorter than in Patene) but still retains a metacone as in Putene and Sallacyon (it is tiny in this genus), contrary to the other borhyaenoids. The trigon is still well basined and the stylar shelf is reduced but present. The stylar cusps A and B are totally fused in a very large "parastyle"; there is just a hint of stylar cusp D and the stylar cusp E has totally disappeared.

Lower dentition

Lower incisors, (Fig. 3) In the description of the lower incisors of Mayulestes the medial incisot will be regarded as the $i 2$ and the lateral as the $i 5$ following Hershkovitz (1982). The four incisors are preserved on the right dentary only. Their relative volume in occlusal view is as follows: $\mathrm{i} 2<\mathrm{i} 3>\mathrm{i} 4>\mathrm{i} 5$. The incisors have a single cissped crown. The $i 2$ is slightly compressed mesiodistally and $13-5$ are compressed labiolingually, 14 and is being clearly spatulate. The incisor row is a regular arch but the root of $i 3$ is staggered and buttressed labially as observed in most didelphids, several borhyaenoids (Borhyaena, Siutplocyon, Cladosictis, Thyhatinus), some dasyurids and peramelids (Hershkovitz 1982). A staggered i3 is also present in pucadelphys and Andinodelphys (Muizon et al. 1997).
Lower canine. (Fig. 3) The lower canine is large although conspicuously smaller and slooter than the upper canine. It is longer than wide and compressed transversally (this is particularly clear on the root). The large axis of the tooth is ser at an oblique angle in relation to the cheek tooth series. It is genily recurved posteriorly and its posterior edge bears a diseinct wear surface from the upper canine.
Lower premolars. (Fig. 3) The pl is only preserved on the right hemimandible; the posterior heel of the p2 and complete p3 are preserved on
the left hemimandible. The three premolars are double rooted. The pl is very small, single cusped and triangular. It is set slightly obliquely in the dentary, as in the Borhyaenidae (although this feature is much more emphasised in the representatives of this family), In labial view the posterodotsal edge of the crown is three times longer than the anterodorsal. Therefore, the tooth is strongly asymmetrical and its apex is displaced anreriotly and occurs above the middle of the anterior root. The anterior edge of the crown overhangs the anterior border of the anteriot root. The 22 is known by its posterior heel only, which is similar in size with that of p 3 . The p 3 has a high crown. It is highet than long, as in Patene and Sipalucyon but contrary to Cladosictis. As in Patene, the apex of the tooth is located above the anterior root, contrary to Cladosietis and Sipalocyon where it is located above the middle of the tooth, The anterior edge of the main cusp is convex and the posterior edge concave; the former is approximately 40% shorter than the latter, Because of the shape of its edges, the main cusp of the tooth is slightly recurved posteriorly. In occlusal view, the labial side of the main cusp is strongly convex while the lingual side is relarively flat. The anrerior edge of the tooth has no basal cusp but the anterior base of the crown protrudes antetiorly and is elevated. The concave area below the protruding base of the crown receives the posterior heel of the p 2 . Such a condition is also observed in l'atene and in most didelphids. It is absent in other borhyaenoids where the cheek tooth row is less compressed anteroposteriorly. There is no diastema between the canine and $p 1$ and berween the premolars.
Lower molars. (Figs 3, 4) In length and height $\mathrm{ml}<\mathrm{m}^{2}<\mathrm{m} 3<\mathrm{m} 4$ and in widrh of the trigonid $\mathrm{ml}<\mathrm{m} 2<\mathrm{m} 3>\mathrm{m} 4$. However, the increase in size is moderate, contrary to the condition in most other borhyaenoids. The lower molar structure is similar to that of Allgokirus but the tooth proportions are nore slender and the m 3 of Mayulestes (the only lower molar known in Allqokirus is an m3) is smaller and narrower than that of Allyokirus. Besides the size, the main difference between anterior and posterior molars is the shape of the trigonid in occlusal view, which
becomes wider and less opened lingually from ml to m 4 . On the four molars the trigonid is much higher and wider than the talonid. The protoconid is very large and is much higher than the other cusps of the trigonid. It has a triangular section and is swollen labially while the lingual side is flat. This morphology is commonly
observed among borhyaenoids but is better marked in Maynlestes, Allankirus, Patene and Nemolestes than in the other borhyaenoids. The paraconid is similar in proportion to that of Patene, buc is smaller than in most other borhyaenoids. It has a triangular section in occlusal view. On the anterolingual edge of the

Fig. 3. - Mayulestes ferox, holotype (MHNC 1249). Right hemimandible: A, labial; B, occlusal; C, lingual views, Left hemimandible: D, lingual; E, occlusal views. Scale bar: 1 cm .
paraconid is a large, salient pteparacristid, appressed againse the lingual side of the hypoconulid of rhe preceding tooth. In fact the larter interlocks with the anterior edge of the following

Fig. 4. - Mayulestes ferox, holotype (MHNC 1249). Right lower molars: A, labial; B, lingual; C, occlusal views. Scale bar: 5 mm .
tooth. The anterolingual side of the paraconid is concave and reccives the preceding hypoconulid which is limited lingually by the paracrissid and labially by the lingual edge of the precingulid. This feature is likely to be plesiomorphic since is is observed in all the other borhyaenoids (alrhough somehow altered in ferms with very robust dentitions), in didelphids, in several Cretaccous Theria (Kielantherium, Asioryctes, Prokennalestes, Kokopellia, Eodelphis, Didelphodon, Alphadon, Glasbius) and in the eupantothere Peramus.
When unworn (i.e. on m4), rhe paraconid and the metaconid are subequal in height. The meraconid is slightly less robuse and shorrer in lingual view than the paraconid. It has a subcircular section in occlusal view and is relatively large for a borhyaenoid. It resembles in size rhose of Allqokirus and Patene (alchough, in the latrer genus, it is somerimes slighrly smaller than the paraconid), but it is larger than in all the other borhyaenoids which still retain a metaconid (Nemolestes, Pharsopharus, Plesiofetis). In these genera the metaconid is always much smaller than the paraconid. 'The paracristid and protocristid are sharp and stow a conspicuous carnassial norch at the limit of the cusps (respectively paraconid and protoconid; pronoconid and metaconid). The protocristid is almost transverse while the paracristid is strongly oblique in relarion to the tooth row (the obliquity is more pronounced in the anterior than in the posterior molars). At the anterolabial base of the trigonid is a strong precingulid which runs from the labial angle of the paraconid to the base of the protoconid above the middle of the anterior toot.
The talonid is narrower than in Allqokirus, Patene, Sipaloryon and Cludosictis, 'The basin of rhe talonid is moderately developed and opens lingually between the eltuconid and the metaconid. The talonid is chatacterized by the large size of its hypoconid and the great reduction of its entoconid. The hypoconid is the largest cusp of the talonid. It is much larger than the entoconid and more voluminous than the hypoconulid. Although it is slightly worn on the specimen described, on ml-3 it was probably as high as the hypoconulid and slightly lower on m4. The entoconid is very small and much less volumi-

Fig. 5. - Mayulestes ferox, holotype (MHNC 1249). Skull: A, dorsal; B, ventral; C, lateral views. Scale bar: 1 cm.

nous and lower than the hypoconid. In this respect, it resembles the condition observed in Allqokirus but differs from Patene where the entoconid (although less voluminous than the hypoconid) is less reduced than in Mayulestes and has approximatcly the same height (sometimes it is higher) as the hypoconid. A welldeveloped cristid obliqua connects rhe anterolingual angle of the hypoconid to the posterolingual angle of the protoconid slightly labial to the notch of the protocristid. The bypoconulid is moderately large on $\mathrm{ml}-2$ where it is only slightly higher than the enroconid. On m3-4 it is voluminous and high. On the four molars it is very salient posteriorly, conrrary to the other borhyacnoids. It is located in a lingual position but not connate to the entoconid. This condition is probably due to the grear reduction of the entoconid, since this feature is very clear on the other borhyaenoids. On ml-3 a large postcingular shelf extends ventrolabially from the tip of the hypoconulid across the postetolatial surface of the hypoconid. The postcingulid is very reduced on $m 4$ and does not reach the tip of the hypoconulid.

Bony skull
General features. (Figs 5,6) The only skull known of Mayulestes is dorsoventrally crushed, but it is probable that it litule affected the ventral and dorsal views of the skull. The major damage to the skull is in the basicranium where the basioccipital, the basisphenoid and the alisphenoid have heen pushed down into the braincase (the skull has fossilised with the palate facing dorsally). The perrosals, the glenoid fossae and the occipital condylcs have resisted the pressure better and remained salient. The skull is small and relaively short anteroposieriorly when compared to gracile forms such as Cladosictis and Sipalocyon. It is not as stout as that in Borlyathat and approaches the proportions observed in Prothylacymus. Alchough the rostrum seems to be shorter rhan in orher borhyaenoids. Table I (p. 86) shows that the ratio of length of the rosrrum (from the tip of the premaxillae to the anterior foramen of the infraorbital canal) to total length of the skull is higher in Mayztestes than in any Santa Cruz bothyaenoids. The costrum of Mayulestes does not have the strong postcanine constriction observed in the

Santa Cruz borhyaenoids and, in this respect, it clearly resembles the morphology observed in didelphids. The temporal fossae are long and represent more than half of the skull length. The maximum width of the skull is located at the posterior extremity of the remporal forsae, slightly anterior to the glenoid fossae. "The zygomatic arches are regularly curved from their anterior root to the glenoid cavity, where they form an almost right angle before contacting the braincase. This condition is similar to that observed in Borbydenar. Clardusictis and Prothylacymes, but differs from that in Sipalocyon where the aygomatic arch is regularly convex form its anterior to its posterior toot and where the maximum width of the skull is more antetior. The interorbital constriction is weak and has a width close to that of the remporal fossa. In all other borhyaenoids it is clearly narrower. The brainease is large and not clearly separated from the interorbiral bridge. Iti lateral edges are almost straight, regularly divergent posteriorly and not convex as in other borhyaenoid skulls.
A small but well marked sagittal crest is present. It begins on the posterior edge of the frontals, runs posteriorly on the pariecals and rises at its contact with the lambdoid crest. It is low and has the same elevation all along the parietal. The posterior part of the braincase shows a welldeveloped dorsoposteriorly directed lambdoid crest. Both the sagittal and lambdoid erests are more reduced than in the other borhyaenoids and the lambdoid crest does not overhang the oceipital condyles posteriorly.
In ventral view, the palate is wide and the dental rows are straight to convex laterally, contrary to orher borhyaenoid where they are generally coneavo-convex. The glenoid fossa is located posteriorly, lateral to the anterior extremity of the promontorium of the pars petrosa and to the foramen ovale. The latere is located at the posteroventral angle of the alisphenoid. Is anterior border is formed by the alisphenoid and its posterior edge is formed by the petrosal.
Nasal. (Figs 5A, 6A) 'The bones extend anteriorly beyond the anteriormost point of the nasalpremaxilla suture. The anterior halves of the nasals are elongate and narrow. They become progressively narrower posteriorly and are narro-
west at the level of a transverse line joining the anterior formina of the infraorbital canal. Posterior to this line, they strongly and rapidly widen and reach their latgest width at the triple junction with the frontal and she lacrimal where they form a small posterulaterally ditected horn. The frontal-nasal suture is matkedly W-shaped, with the base of the W facing posteriorly. The nasals of Mayulestes ferox have a clear contact with the lacrimal, a plesiomorphic feacute observed in all other borhyaenoids.
Premaxilla. (Figs 5, 6) The anterior edge (the alveolar border) of the premaxillae is gently arched when viewed dorsally or ventrally and the bones protrude anteriorly contrary to what is observed in other borhyaenoids, where the anterior edge of the premaxillac is almost sttaight and transversal. As a consequence, the incisor tooth row in ventral view is a wide open parabola while it is generally straight in other borhyaenoids. The ascending process of the premaxilla is long and slender and inserts berween the nasal and the maxilla posterodorsally. The lengrh of the premaxilla-nasal suture is approximately 25% of the rotal length of the nasal. The width of the ascending process is roughly constant from its anteroventral extremity to the anterior point of the nasal-premaxilla suture. This part of the process, approximately half of it, forms the lateral edge of the external nares. The posterior half of the process articulating with the nasal is very sharp and progressively tapers posteriorly.
At the anterior point of the nasal-premaxilla suture the anterodorsal border of the ascending process shows a distinct anterodorsal protrusion which corresponds to the point of junction berween the plane of the external nares and the dorsal surface of the rostrum. The two planes form an angle of approximately 140°. Laterally, the maxilla-premaxilla suture runs anteroventrally and reaches the alveolar border slighty beyond the apper canine and the bottom of the fossa for the lower canine. In this fossa the maxillapremaxilla suture runs posteromedially and reaches the lingual alvenlar border at the anteromedial angle of the canine. At this point the suture takes an almost anteroposterior direction. On the lateral border of the canine fossa, the
premaxilla is in contact with the anterolateral process of the maxilla which forms the pusterior third of the lateral wall of the canine fossa. Its two anterior thirds are formed by the premaxilla itself. In other borhyaenids, the maxilla forms no part of the lateral border of the fossa for the lower eanine while in the didelphids and in Pucadelphys (early Palaeocenc of Bolivia) the maxilla forms the entire lareral wall of the fossa. The borhyaenoids are characterized by the loss of the maxillary anterolateral process which borders the canine fossa laterally. The condition of Mayulestes represents an incipient development of this borhyaenoid feature, since the anterolateral process of the maxilla is greatly reduced when compared to the didelphoids but has not totally disappeared as is olserved in the other borhyaenoids. The forsa for the inferior canine is located anterior to the upper canine. Its anterior part is in the premaxilla just beliind and dorsal to the 15. The botom of this fossa is in the small portion of the maxilla, anterolateral to the upper canine and is lateral rim is formed by the maxilla. Its dorsal extemity is situated more ventrally than in Cladosictis, Sipalocyon, Acracyon, and Borlyazena. The incisive foramina are elongated, narrow and slighty concave laterally. Their anterior extremity is at the level of the posterior end of the 13 and their posterior end reaches the anterior border of the caninc. 'The medial edges of the incisive foramma are made of the venntromedial processes of the premaxillae, which seem to diverge slightly posteriorly, It is also possible that the divergence of the processes is the result of the deformation of the skull due to fossilization.
Maxilla. (Figs 5, 6) The dorsal process of the maxilla is a low rounded blade, articulating anteriorly with the premaxilla, dorsomedially with the nasal, posreriorly with the lacrimal and laterally with the jugal. It has no contact with the frontal. The posterior edge of the dorsal process has a transverse suture that is roughly convex anteriorly. Ir articulates laterally with the jugal at the level of the anterior part of M 2 and passes on the ventral side of the skull. The jugal-maxilla sutures are almost parallel to the alveolar border, slightly converging anteriorly. The anterior opening of the infraorbital canal opens dorsal to P3. It is of moderate to small size and probably
slightly elongated dorsoventrally. This observation is difficult because of the crushing of the skull. The posterior npening is flatened by deformation but it is likely that it was elongated transversally, It opens dorsal in M2. Its dorsal rim is formed by the lacrimal and its venural rim by the maxilla, It is not possible to determine if, as in Pucudelphys, the palatine also participates to the medial rim of the frranen. In Recent metatherians, the infraorbital canal transmits the infraorbital branch of the V2, a branch of the infraorbital artery and a small vein (Archer 1976). The floot of the orbit is formed by the maxillis. Its suture with the palatine, medially, is not observable.
On the ventral side of the palate, there is a large postpalatine foramen with an orientation similar to thar observed in Didelphis. It faces anteromedially with a small ventral component. Because of this condition, in ventral view, the postpalatine foramen appears as an clongated slit with an anterolateral-postetomedial orientation. This is clear on the left side of the specimen where the foramen is intact. The postpalatine formen of Mayulestes is proportionally much larger than in other borhyaenoids. Its anterolateral edge is formed by the maxilla and its dorsal, ventral and posteromedial edges are formed by the palatine. The palatine-maxilla suture is difficult to determine but it probably formed a regular parabola with an apex at the level of M1 and with branches reaching the anterior border of the postpalatine foramen. Although the palate has been deformed it is possible to observe that it was fairly deep and hollowed. The palatal portion of the maxilla las no vacuities.
The anterior extremity of the maxillae on the palate shows two small anterolateral processes which form the posterolateral rim of the incisive foramina. On its anteromedial edge each maxilla shows a tiny anteromedial process wedged between the ventromedial process of the premaxilla and the vomer.
Palatine. (Figs 5, 6) On the posterior extremity of the palate, the ventral edge of the choanae is relatively wide. It is approximately half of the distance between the protocones of the M4 while it is close to one third of the distance in Borhyaena, Prothylacynus, Cladosictis and

Sipalocyon. The edge is thickened but does not form a true postpalatine torus as observed in most didelphoids (including Pucadelphys, the oldest member of the superfamily known from skulls and skeletons), where it is salient ventrally and laterally. In this respect it resembles the condition observed in other borbyaenoids and differs from that in the didelphoids. In anteroventral view of the palate the ventral rimt of the choanae is markedly concave ventrally. At the interpalatine suture, a median spine is formed by the two medial spines of each bone. A lateral spine is lacared on the posterior edge of the postpalatine foramen and oriented ventrally. It articulates with the anterior exttemiry of the pterygoid wing and is closely appressed to it. It also articulates with the maxilla anteriorly. The lateral spine and ies articulation with the prerygoid are located ventrally to the medial spine. Although the palatine bones are broken, it is possible to observe that they had no palatal vacuities a condition found in all the other borhyaenoids,
The orbital portion of the palatine is badly damaged because of the crushing of the skull, and, therefore, its relationships with the lacrimal and the naxilla are very difficult to observe. However, on the right side of the specimen, a large sphenopalatine foramen, opening posteriorly, is located ventally and slightly posterior to the latetal extrenity of the frontal-lacrimal suture. It is well anterior to and dorsal to the postpalatine foramen. The sphenopalatine foramen transtinits the sphenopalatine artery and nerve into the nasal cavity.
Postetomedially, the palatines have two large sphenoidal processes which roof the choanae and
the palatine gutter. The processes underlap the presphenoid and the basisphenoid and have a small contact with che anterior processes of the alisphenoids. This condition is probably similar to that observed in the didelphids.
Prerygoid. (Figs 5C, 6C) Both pterygoids are preserved on the specimen described here. The prerygoid of Mayulestes is a large (for a borhyaenoid), triangular blade, located lateral to the roof of the chomanae. It is high and has a well-developed hamulus on its posteroventral extremity. It articulates mostly with the posternmedial extensions of the palatines which form the roof of the choanae and underlaps the presphenoid and the basisphenoid posteriorly. The pterygoid contacts the alisphenoid posteriorly and, anteriorly, has a very small conract with the maxilla posternlateral to the postpalatine foramen. The pterygoid of Mayulestes ferox is much larger that of the didelphids. It is very reduced in other borhyaenoids where it loses the hamular processes.
The choanal gutter of Mayidestes is very similar to that of didelphids: it is short anteroposteriorly and is bordered mostly by the pterygoids. In the other borhyaenoids the prerygoids are reduced and the choanal gutter is elongated. Its walls are formed by the sphenoidal processes of the palatines and the prerggoid processes of the alisphenoids. They are thick and their lateral side is buttressed by a salient ridge.
Lacrimal. (Figs 5, 6) The lacrimal forms the anterior border of the orbit. It has a large triangular portion on the dorsal surface of the skull. Its lateral portion is a small horn that articulates on the medial side of the anterior extremity of the jugal. The lacrimal articulates with the maxilla anteriorly, with the fmnral postemomedially, with the nasal

Fig. 6. - Mayulestes ferox. Reconstruction of lhe skull and mandible (lateral view): A, dorsal; B, ventral; C, lateral views (the ascending ramus of the dentary, lacking in the holotype, has been reconstructed from the mandible of a recently discovered specimen probably feferable to Mayulestes). Abbreviations: AS, alisphenoid; ahs, alisphenoid nypolhympanic sinus; BO, basioccipital; BS, basisphenold; corpd, coronoid process of dentary; cpd, corrdyloid process of dentary; DEN(ar), ascending ramus of dentary; DEN(hr), notizontal ramus of dantary; doc, dorsal nccipital condyin; cam, oxtornal autitory moatua; ef, entocarotid foramen;

 mal; Ic, lambdoidal crest ($=$ nuchal crest); It lasnmal foramon; most, masenteric toraz; ment, montal toramen: mp, mastoid process: mpf, misdial palatine foramen, mps, merlial pomenss of the squamosat, MX, maxila', NA, nasai; PA, pariatal; pgl, poatglenold foramen; pgp. postglenoid process of the squamosal; PL, palatine; PMX, prernaxilla; P(pm), pars mastoiden of gulromastuid ($=$ mastoid

 sc, sagittal crest; sica, sulcus for the internal carotid artery; SO, supraoccipital; spf, supraorbital process of frontal; SQ, squamosal. Scale bar: 1 cm .
medially and with the jugal laterally, There are two lacrimal foramina. The medial foramen is large and wider than high. The lateral foramen is formed by two small superposed foramina.

Jugal. (Figs 5,6) This bone is relarively long and slender when compared to what is observed in the other borhyaenoids. The anterior articulation with the maxilla is relatively short (30% of

the total length of the bone) and, in lateral view, it is less oblique than in the othet borhyaenoids. The anteriormost extremicy of the iugal is lateral to the anterior edge of M2. In ventral view, the jugal-maxilla sunure is equidisrane along all irs length from the alvecalar border and the sutures on both side of the specimen are slighty divergent posteriorly. Medially on its anterodorsal side, the jugal has a small articulation with the lacrimal. In lateral view, the bone is gently sigmoid. Its anterior portion is concave dorsally and forms the ventral border of the orbit. The transition from the orbit to the temporal fossa is hardly marked by the inflexion of the bone. The posterior portion of the bone is convex dorsally and is approximately 60% of the toal length of the bone. Ar a level slightly anterior to the postorbital constriction, the jugal articulates dorsally with the zygomatic process of the squamosal. Its posterior extremity contributes to the anterolareral edge of the glenoid fossa. From the posterion end of the jugal-maxilla arriculation to the anterior end of the jugal-squamosal articulation, the jugal has a constant widrh, it tapers rapidly towards irs anteriot exrremiry and gradually towards its posterior extremity. On the lateral side of the bone, a sigmoid rim and a shatlow sulcus for the inserrion of the masseter muscle run from the dorsal region of the posterior extremity to the ventral region of the jugal, at the level of the posterior extremity of the jugal-maxilla suture.
Frontal. (Fiigs 5, 6) In dorsal view, the frontals form the inrerorbital bridge located between the slightly longer rostrum and braincase. The frontals represent approximately 28% of the total length of the skull. Anteriorly they have a distinct W-shaped suture with the nasals and, on their anterolareral edge, a small suture with the lacrimals. The posterior suture with the parietals also has the shape of a W widely opened posteriorly. Lateral to the frontal-parietal suture, the dorsal part of the frontal-alisphemoid suture is subvertical; the venrral portion of the suture is not observable hecause of the crushing of the specimen. Very weak and rounded supraorbital processes (they resemble humps more than processes) are located dorsally in the middle of the lateral edge of the bone and a reduced interorbi-
tal constriction is located slightly anterior to the frontal-parietal suture. Supraorbital processes and interorbical constriction are much less developed than in the other borhyaenoids and the constriction is in a more posterior prosition than in the other borhyacnoids. In dorsal view, the fromals are much less opened anteriorly (i.e. the lateral edges of the bones are less diverging anteriorly) and mach natrower posteriorly than in the orher borhyaenoids. There is apparently no supraorbital fotamen as in other horhyaenoids and in didelphids, although a tiny foramen below the right supraorbital "hump" could represent an actual supraorbital foramen.
On the lateral side of the skull, the relationships of the frontal with the palatine, the urbitosphenoid and the lacrimal are not observable because of the crusthing of the skull.
Parictal and interparictal. (Figs 5, 6) The two bones are tightly fused and no suture can be distinguished hetween them.. The bones ate rclatively flat which denotes small cerebrat hemispheres. In the middle of each parictal, and medial to the anterior edge of the posterior root of the zygomatic arch, is a small prominence (corresponding ro the cerebral hemispheres) and, locared behind, a small depression just posterior to the anterior extremity of the bone. Behind the prominence is another depressed area which corresponds to the interparietal region anterior to the lambdoid crest Except for the relatively weak (for a borhyaenoid) sagital and lambdoid crests, the muscular attachment for the temporal muscle is not clearly evident as is observed in Pucadelphys hy several irregular scars. Each parietal has a V-shaped suture with the frontal anteiiorly (the V being wide open posteriorly), an oblique concave sutture with the alisphenoid (i.e. the two parietal-alisphenoid sutures diverge posteriorly in dorsal vicw) and a concave, anteroposterioly oriented suture with the squamosal. The triple point between the pariezal, the alisplenoid and the squamos.al is located lateral to the hemispherical prominences of the parictal, approximately in the middle of the lateral edge of the parietal. Several small grooves or pits roughly alighed transversally are observed in the middle of the eranial vaule, on both sides of the sagittal crest. They do not seem to correspond to muscu-
lar attachments but probably represent scars due to injuries resulting from the atrack of a predator on the head of the holotype of Mayulestes ferox. catching it from above and to the side.
Orbitosphenoid. (Figs 5, 6) This bone is preser-ved but it is badly crushed. It can be observed in the bottom of the large optic-orbital foramen. The lateral wall of this foramen is formed by the alisphenoid and the medial wall is formed by the orbirosphenoid. The foramen is located dorsolateral to the base of the hamular process of the perygoid. In the specimen described here, a portion of the alisphenoid arrificially overlaps the anteromedial edge of the optic-orbital foramen. Approximately 5 mm beyond the posterolateral rim of the optic-orbital foramen, at the suture between the orbitosphenoid and the frontal is the ethmoidal foramen which is located dorsolaterally to the anterior third of the pterygoid. The optic-orbital foramen and the ethmoid foramen are located in a slightly more posterior position than in the living Diddlphis. The opric-orbital foramen transmits the cranial nerves II, III, IV, V1, VI, the ophtalmic artery and a vein which drains the eye to the cavernous sinus. The ethmoid foramen transmits a branch of the internal carotid from the orbic into the olfactory region of the cranial cavity (Archet 1976).
Alisphenoid. (Figs 5C, 6C, 7, 8) This bone forms the anteroventrolateral region of the braincase. It has a large articulation with the frontal anteriorly and laterally; with the parietal dorsolaterally and with the squamosal posterolaterally. The alisphenoid arriculates with the orbitosphenoid medially, the palatine and the perygoid anteriorly and the basisphenoid and the periotic posteriorly. Anteromedially, the alisphenoid forms the posterior tim of the opric-orbital foramen. Postero-lateral to it is a large foramen rotundum (which transmits the maxillary branch of the trigeminal nerve, $V 2$) which opens anteriorly. Lateral to the foramen rotundum is a wide groove bordered laterally by a sharp crest, obliqucly oriented (i.e. in anteromedial-posterolateral direction). This structure represents the ventralmost extension of the origin of the temporalis muscle, which was apparently well-dcveloped in Mayulestes. This structure is also observed in Didelphis, although here it is much less pro-
nounced. It is absens in Borbyaena, Cladosictis and Sipalocyon, but it is very well-developed in Prothylacynus where strong fossae, grooves and crests are prosent in that region of the skull. Posteromedial to the foramen rotundum, the alisphenoid borders the basisphenoid laterally and, at the posterolateral exeremity of this bone, it contributes to the formation of the dorsal wall of the entocarotid foramen (which transmits the. internal carorid artery and a small vein from the inferior petrosal sinus). Lateral to the entocarotid foramen, the alisphenoid forms the anterior edge of the foramen ovale and the foramen lacerum medium. Because of the deformation of the skull it is not certain whether the foramen ovale and the foramen lacerum modium were separared from each other by a bony wall or wereconfluent, although the first interpretation is more probable. Posterolaterally, the alisphenoid contributcs to the formation of the alisphenoid hypotympanic sinus (see Muizon 1991) where it is wedged between the petiotic posteromedially and the medial process of the squamosal anterolaterally. The alisphenoid dues not possess any rympanic process, not even incipient. No trantsverse canal is observed lateral to the suture with the basioccipital. Latcrally, the alisphenoid contributes to the formation of the anteromedial angle of the glenoid fossa.
Basisphenoid. (Figs 5C, 6C, 7, 8) It is a large rrapezoid bone narrow anteriorly and wide posteriorly. It is anteriorly underlapped by the sphenoid processes of the pterygoids which hide its suture with the presphenoid. The bone is bordered by two lateral crests which are bigher in their anterior frortion. Along these crests, the basisphenoid is tightly articulated with the alisphenoid but the suture is clearly visible on both sides of the specimen. On the posterolateral angle, a reasonably developed entocatotid foramen opens wherein the ventromedial cdge is formed by the basisphenoid. The bone is flat on most of its surface, except for the lareral crests and a small median ridge that occurs in its anterior region and which tapers rapidly posteriorly. The suture with the basioccipital is straight, transverse and joins the anterior extremity of the periotics.
Squamosal. (Figs 5-8) Dorsally, the squamosal
articulates with the posterior lateral half of the parietal in a convex suture. Anterolaterally, it has a subvertical suture with the alisphenoid which turns laterally and passes on the ventral side of the skull, where it cuts nbliquely the anteromedial angle of the glenoid fossa. It then runs medially, almost reaching the lareral border of the foramen ovale. In this area the squamosal possesses a medial indentation [called here the medial process of the squamosal (Muizon 1994)] which is also present in the other borhyaenoids, and in Andino-delphys Pucadelplys bur absent in other marsupials (see discussion below). The posterior edge of this process is excavated by the roof of the alisphenoid hyporympanic sinus and its ventral side bears a conspicuous ridge which almost joins the medial edge of the glenoid fossa to the lateral border of the foramen ovale (the anterior crest of the alisphenoid hyporympanic sinus; Fig. 7), The medial process of the squamosal articulares with the alisphenoid and, as the point where the suture leaves the alisphenoid hypotympanic sinus posteriarly, the squamosal articulates with the periotic. The suture runs along the lateral border of the epirympanic recess and the fossa incudis. Further posteriorly, the squamosal has an irregular contact with the lateral surface of the pars mastoidea of the periotic. The periotic-squatmosal sururc is visible in dorsal view of the skull where a small portion of the pars mastoidea is not covered by the squamosal and is part of the lambdoid crest.
The glenoid fossa is deep and elongared transversely. In this respect it tesembles that of Borhyaena, more than that of any other burhyaenoid. The axes of the glenoid fussae are not exactly patallel as in Borbydena and Prothylacynus but are slightly oblique in relation to the anteroposterior axis of the skull. Its anteromedial angle is formed by a small contribution of the alisphenoid as observed in most didelphids and peramelids, contrary to the other borhyaenoids. The postglenoid process is very wide and high. It has a rounded outline and is approximately symmetrical in posterior view (i.e. its greatest ventral expansion is located ar the midedle of the glenoid fossa). The preglenoid process of the jugal is much smaller and is located at the anterolateral angle of the glenoid fossa. The postglenoid fora-
men is located on the posteromedial edge of the postglenoid process. The vessels it transmits continue their course in a groove along the ventromedial edge of the postglenoid process. The groove disappears approximately in the middle of the ventral edge of the process. The pastglenoid foramen is exclusively formed by the squamosal, while internally the medial wall of the canal is furmed by the lateral side of the perioric and the mectial wall is formed by the squamosal. The postglenoid foramen transmits the sphenopariecal emissary vein (which externally becomes the postglennid vein) from the prootic sinus (Wible 1990) and the postglenoid artery (Archer 1976; Wible 1990).
The subsquamosal foramen is preserved on the left side of the specimen bur it is reduced to a small slit (probably slightly flatened by the deformation of the skull) posterodorsal to the postglenoid foramen, juss dorsal to the external acoustic meatus. In differs from what is observed in all other borhyaenoids where the subsquamosal foramen is always much larger, but clearly resembles that of the stagodontid Eodelphis cutleri from the Late Crecaccous of Canada. The subsquamosal foramen opens into the poseglenoid foramen and rransmiss an artery from the postglenoid foramen onto the parietal area of the cranium, which supplies the tempotalis muscle, and a vein from the sphenoparietal emissary vein, which exits through the postglenvid foramen (Archer 1976; Wible 1990).
There are no obvious postzygomaric furanina, contraty to the condition observed in Pucadelphlys. However, the small foramen located in the groove of the postglenoid foramen could represent the postzygomatic foramen which migrated medially from its position dorsomedial no the apex of che glenoid process. The condition of Mayulestes is found in the other borhyannoids and in Didelphis. The postzygomatic foramen rransmits a vein from the posterior root of the zygomatic arch to the sphenoparietal emissary vein (Archer 1976). In some orther Borhyaenoidea (Prothylarynus, Cladosicis, Sipalocyon and Sallacyon) another foramen is present on the lateral face of the zygomatic process of the squamosal, just above the glenoid fossa. In didelphids, when present, this foramen is connected

Fig. 7. Mayulestes ferox, holotype (MHNC 1249). Basicranium. Scale bar: 1 cm ,
to the postrygomatic foramen. The same is probably true in borhyaenoids although the second foramen is located furtlier anteriorly than in didelphids and therefore more distant from the postrygomatic foramen.
Becausc the pars mastoidea of the periotic has been displaced from its original contact with the squamosal, it is difficult to observe the posttemporal foramen. However, the pars mastoidea of the right periotic shows a clear small norch on its ventrolateral angle which could represent the posttemporal foramen. If this interpretation is correct, the foramen would be in a much lower position than in Didelphis and Putcodelphys. The postympanic foramen carries the arteria diploetica magna and the vena diploetica magna which pass through a canal bordered by the periotic medially and the squamosal laterally (Wible 1990).

Periotic. (Figs 7. 8) This bone includes two components: the pars mastoidea which largely contributes to the formation of the lateral part of the occipital view and houses the subarcuate fossa on the cerebellar side; and the pars petrosa which houses the inner car, semicircular canals and cochlea in the promontorium, and, on the cerebellar surface, the internal auditory meatus.
The large pars mastwidea of Mayulestes forms the lateral area of the occipiral shield. It differs from that of all the other borhyaenoids where it is totally internal and does not outcrop on the posterior face of the skull. In Mayulestes, it is wedged berween the exoccipital ventromedially, the supraoccipial dorsomedially and the squamosal anteriorly. A small mastoid foramen is present on
the dorsomedial region of the occipital side of the pars mastoidea, just lateral to its suture with the supraoccipital. In posterior view, the pars mastoidea has a reniform shape with a concave medial edge and a lateral edge straight in its middle and mare or less convex at its extrenities. The surface of the pars mastoidea is mostly flat, but concave in the area of the mastoid foramen. The anteroventral edge of the pars mastoidea is formed by the caudal tympanic process of the periotic (sensu Wible 1990). Its ventrolateral extremiay bears a small and rounded mastoid process but is telatively salient ventrally and posteriorly, Dorsolateral to the mastoid process is a small rim which is bordered laterally by the squamosal, In the middle of that ridge is a foramen of reasonable size which has not been found in other Recent or living marsupials. Its function has nor been elucidared. Anterodorsally to the mastoid process is a small saddle-shaped groove for the passage of the facial nerve: the stylomastoid notch.
The ventral or tympanic side of the periotic is formed by the large teardrop-shaped promontorium which represents the pars cochlearis, and by the porrion of the periotic posterior and lateral to the promontorium, the pars canalicularis. The posteriot region of the promontorium is the thickest and bears a small tubercle just ventral to the cochlear window. A similar rubercle is also observed in Sipalocyon. This morphology has been noted by Archer (1976: 291) who observed on the right promontorium of AMNH 9254 (Sipalocyon gracilts) a transverse swelling posteriot to a small depression that he regards as homologous to the tympanic wing of the petro-
sal in other marsupicarnivores. In Mayulestes the tubercle is exactly in the same position as the rostral tympanic process of the periotic $[=$ tympanic wing of the petrosal of Archer (1976)] observed in living didelphids. From that tubercle a shallow depression rums anteromedially, turns anteriorly and becomes a deep groove at the apex of the promontorium. This sulcus marks the route of passage of the internal carotid attery, which enters the skull wia the entocarotid foramen located anteromedial to the foramen ovale, and is formed by the alisphenoid dorsolaterally and the basisphenoid ventrmedially. The passige of the internal carotid is thus situated medially (sensu Presley 1979). Lateral to the sulan for the internal carotid arsery is a large fossa on the lateral side of the promontorium for the insertion of the stapedial nuscle. This fossa is separated from the sulcus for the internal carotid by a high, bony wall. The medial side of the promontorium has a sigmoid outline؛ it is deeply concave in its posterior region (medial to the tubercle mentioned above) and largely conver in its anterior part forming a blade-like expansion which articulates with the basioceipital. The medial border of the promontorim is the ventral border of a deep medial sulcus for the passage of the inferior petrosal sinus. This vesset is a vein which connects the cavernous sinus (encasing the pituitary gland and the opric chiasma) with the jugular vein just before ir emerges from the inferior petrosal foramen (MacInryre 1972: 291). The sulcus for the jugular vein was misidentified as a sulcus for a branch of the internal carotid artery by Parterson (1965), Clemens (1966) and Marshall (1977a, 1978). The concave edge of the posteromedial border of the promontorium corresponds to the dorsolateral rim of the inferior petrosal foramen.
Two openings exist on the posterior region of rhe promontotium: the fenestra cochleae and the fenestra vestibuli. The fenestra cochleae is situated on the posterolateral surface of the promontorium, just medial to the stylomastoid notch. It has an ovoid shape with its ventral rim more convex than the dorsal as observed in Pucadelphys and other bothyaenoids. The fossula fenestra cochteae, which is well marked in Pucadelphys and in the Late Cretaceous perrosal
type A, B and C of Wible (1990), is absent in Mayulestes as in the other borhyacnoids. Posteromediodorsal to the fenestra cochleae is a funnel-shaped pit opening posterolaterally, which houses the opening of the aqueductus cochleae which opens in the posterior lacerate formuen. The anterolateral rim of the posterior lacerate foramen is formed by the periotic and its posteromedial rim formed by the exoccipital, On the anterolateral side of the promontorium is the fenestra vestituli which is hardly visible (as it is reduced to a simple slit) because of the dorsoventral squeczing of the specimen. Its posterior end is located just medial to the bony rrabecula that makes the junction between the pars mastoidea and the pars perrosa: the crista parorica. On the right periotic it is possible to observe that the Fenestra vestibuli is located within a shallow depression, the fossula fenestra vestibuli.
Laterally, the promonrorium is bordered by a deep, L-shaped groove, which passes berween the promontorium and the epitympanic secess anteriorly and between the promontorium and the candal tympanic process of the periotic, posteriorly. The posteromedial extremity of the groove is formed by the anterolateral wall of the positerior lacerate foramen. The cavity located lateral to this wall, posterior to the posterior border of she promontorium and anterior to the caudal rympanic process of the perioric, is the mastoid epitympanic sinus. Anterolateral to this sinus and lateral to the fenestra vestibuli is a shallow cupule which receives the origin of the stapedius muscle: the fossa stapedius. The stylomastoid notch forms the angle of the L and ventral to it and lateral to the stapedius fossa is the crista parotica, which separates the fossa stapedius medially and the fossa incudis laterally:
Anterior to the fossa incudis is the epitympanic recess. This structure has been defined by Van der Klaauw (1931: 73) and Archer (1976a: 226) and a clear and simple definition has been given by Wible (1990: 188): it is "[...] the extension of the middle ear cavity that lies dorsal to the tympanic membrane and contains the mallearincudal articulation ${ }^{\circ}$. In Didelphis the epitympanic recess is a small etongared fossa located dorsomedial to the dorsal rim of the external auditory meatus, ventral to the prootic canal and lateral

FIG. 8. - Mayulestes ferox, left ear region: A, holotype (MHNC 1249); B, reconstruction. Abbreviations: ahs, alisphenoid hypotympanic sinus: ar, antarior ridge of the alisphenoid hypolympanic sinus; AS, alisphenoid; BO, basioccipital; BS, basisphenoid; ct, condyloid forameri' ctpp, caudal tympanic process of pars mastoidea of petromastoid; eam, external auditory mealus; ef, entocarotid toramen; EO, exoccipital; epa, entoglenoid process of the alisphenoid; er, epitympanic recess; fc, tenestra cochluae; fi, fossa incudis; fo, foramen ovale; fr, toramen rotundurn; fs, facial sutcus; Istm, Iossa for stapedial muscle; fv, fenestra vestibuli; gi, glenoid fossa; ien, intercondylar notch: ipf, inferior petrosal foranien; JU, Jugal; mes, mastoid opitympanic sinus; mp, mastoid process; mps, medial process of the squamosal: oc, occipital condyle; pgt, postglenoid foramen; plf, posterior lacerate forament; P(pm). pars mastoldea of periotic; pgp, postglenoid process of squamosal; po, promontorium of pars petrosn of petromastoid; prgp, preglenoid process of the jugat; PT, pterygoid; ptc, petrosal crest; ptp, postympanic process'; sft, secondary facial foramen; sica, sulcus for internal carotid artery; SQ, squamosal; ttf, tensor tympani fossa. Scale bars: 5 mm .
and parallel to a line joining the secondary facial foramen and the fenestra vestibuli. It is limited laterally by the dotsal rim of the external auditory meatus of the squamosal and anteriorly by an elevated oblique (anterolateral-posteromedial) ridge called the petrosal crest. In living didelphids, the petrosal crest joins the triple point periotic-squamosal-alisphenoid (laterally) and a small crest [roughly anteroposteriorly orienred (precisely, anteromedial-posterolateral)] flooring the medial opening of the prootic canal (medially). The petrosal crest also delineates the posterolateral border of the alisphenoid sinus which is excavated in the periotic ins its postetior portion. The rest of the alisphenoid hyporympanic (in didelphids the sinus is actually, ar least in part, hypotympanic) sinus (i.e. most of it) is excavated in the alisphenoid. The postetior region of the alisphenoid in the sinus underlaps a small portion of the periotic. The posterior portion of the alisphenoid hyporympanic sinus, the anterior portion of the epitympanic recess and the ridge that separates them, form, in the periotic, a small ventrally directed tuiedta that Wible (1990, fig. 4) tetmed the lateral wall of the epitympanic recess. Consequently, the fossa antetior to the petrosal crest, in Wible's illustrations (1990, figs $2 \mathrm{~F}, 4 \mathrm{C}$), do not tepresent part of the epitympanic recess but the periotic portion of the alisphenoid hypotympanic sinus. As it will be shown below, the so called alisphenoid hypotympanic sinus is not always excavated mainly in the alisphenoid and is not always hypotympanic [a contradiction also noted by Archer (1976a: 127)]. Howevet, since the motphology of the middle ear sinus of Mayulestes is regarded hete as homologous to that of the other borlyaenoids and although the term hyporympanic is inappropriate in the case of Mayulestes, it will be used here (as elsewhere, Muizon 1994) in order to avoid confusion.
In Mayulestes, the epitympanic recess is an elongated fossa limited posteriorly by the dorsal portion of the crista parotica and anteriorly by the petrosal crest. The small pit at its posterolateral extremity, lateral to the dorsal part of the crista parotica, is the fossa incudis (or foss.a crus breve incudis) where the ligament of the small process of the incus is atrached. The epitympanic recess
and the fossa incudis are bordeted laterally by the dorsal rim of the extetnal auditury meatus of the squamosal. However, because of the crushing of the specimen described here, they ate opened laterally since their lateral wall is displaced laterally, Following Wible (1989, fig. 4A, C), Muizon (1994, fig. 2a) misidentified the epitympanic tecess of Mayulestes. What I identified as the epirympanic recess is in fact the postetior part of the alisphenoid hyporympanic sinus and the fossa incudis (in Muizon 1994) is the epitymapnic recess. In irs anterior portion, the epirympanic recess is bordered by rwo small crests. The lateral one was probably in contact with the squamosal or close to it and is medial to the ventral opening of the sulcus for the prootic sinus. The medial esest forms the floot of a small trough located just lateral to the secondaty facial foramen and dorsolateral to the petrosal crest. This trough, in didelphids, houses the medial opening of the prootic canal. In Mayulestes the proutic canal is absent. On the lateral side of the right periotic, the sulcus for the prootic sinus is clearly visible because of the opening of the squamosal-periotic suture due to the crushing of the skull. Peering through the sillus, it is not possible to obsetve any lateral foramen of the prootic canal. Medial to the medial extremity of the pettosal crest is the secondary facial foramen which opens posteriorly and through which is passing the facial nerve.
Beyond the petrosal crest is a large (but small for a borhyaenoid) alisphenoid hyporympanic sinus. It is made of three different bones, the periotic, the alisphenoid and the squamosal. Its posterior half is excavated in the petiotic. In Mayulestes it is approximacely half of the sinus while in Didelphis that region of the periotic is totally covered by the alisphenoid ventrally. The anterolateral half of the sinus is formed by a small strip of the alisphenoid, postecomedially, and by the posterior wall of the medial process of the squamosal, anterolaterally. The alisphenoid-squamosal sutute has a distinct sigmoid morphology. The anterior border of the alisphenoid sinus is formed by the medial process of the squamosal which bears a conspicuous ridge (the anterior ridge of the alisphenoid hypotympanic sinus) which almost joins the medial border of the gle-
noid fossa to the lateral border of the foramen ovale.
Anteriorly, between the fossa for the tensor tympani muscle and its lateral border, the periotic forms the posterior border of the foramen ovale. This condition is primitive for marsupials. (Muizon et al. 1997) and will be discussed below.
Ectotympanic. No ectotympanic has been found with the type specimen of Mayulestes. In other borhyaenoids, the ectotympanic articulates with the squamosal between the medial edges of the postglenoid process and postglenoid fotamen and the medial process of the squanosal. The alisphenoid also participates in the articulation and small contact may exist with the posttympanic process of the squamosal posteroventrally. A shallow groove and small ridges can be observed in this area and evidences the arriculation with the ectotympanic. In Mayulestes this region of the skull is damaged on both sides of the specimen. However, on the right side of the skull, it is possible to observe the contact berween the squamosal, medial to the postglenoid foramen, and the periotic, lateral to the lateral extremity of the petrosal crest and the periotic part of the hypotympanic sinus. A fairly good reconstruction of this region of the skull is possible, and apparently, there was no groove or ridge for the articulation of the ectotympanic, although very subte undulations of the squamosal in this area are observable with incident light. Therefore, it seems that the ectotympanic of Mayulestes was not tightly imbricated with the squamosal as in other borhyaenoids. This bone was probably maintained in its position by ligaments only, but perhaps appressed against the squamosal in a position that could represent an incipient development of the condition observed in the other borhyaenoids. This condition seems to be intermediate berween that of Didelphes - where the ectorympanic is atrached to the alisphenoid by ligaments only, and has no true articulation with the skull - and that of other borhyaenoids.
Basioccipital. (Figs 5C 6C, 7) Because of the dorsoventral crushing of the skull, the bone has been pushed dorsally within the braincase and occupies a position dorsal to the periotics wherein the inferior petrosal sinus is exposed medially. The basioccipital is a short, broad, trapezoidal
bone which contrasts with that of the other borhyaenoids where it is generally longer and narrower, In this respect, it is more similar to that observed in Didelphis. The basioccipital has a broad, transverse suture with the basisphenoid anteriorly. Posterolaterally, at its contact with the periotic, the basioccipital is inflated, a morphology which indicates the passage of the inferior petrosal sinus. Its articulation with the exoccipital is formed by two oblique lines, which join the posteromedial angle of the promontoria to the central region of the ventral sim of the foramen magnum which is formed by the basioccipital. The bone has a snall median keel which starts at the basisphenoid-basioccipital suture and which affects the anterior two thirds of the bone. On each side of this keel are two deep fossae for the origin of the rectus capitis ventral is muscle.
Exoccipital. (Fig. 9) This bone contacts the periotic medially and forms the posterodotsal wall of the inferiot petrosal foramen, and the medial and posterior sim of the foramen lacerum posterior (which transmits the nerves IX, X, XI, and probably a small branch of the sigmoid sinus, to the internal jugular vein). Anteriorly it has a small contact with the pars perrosa of the periotic by the seprum between the inferior perrosal and posterior lacerate foramina and laterally it contacts the pars mastoidea of the periotic. On the ventral side of the exoccipital, anterior to the ventral portion of the occipital condyle, are two condyloid foramina which probably transmisted branches of the nerve XII (Jollie 1962) but may also carry branches of the sigmoid sinus to the internal jugular vein (Archer 1976).
In posterior view, because of the crushing of the skull, the foramen magnurm is flatened dorsoventrally and the occipital condyles are "folded" and broken. It is however possible to note that the exoccipitals had a large, convex suture with the pars mastoidea of the periotic (i.e. the lateral edge of the exoccipital is convex). The suture witls the supraoccipial is slightly convex (i.e. the dorsal edge of the exoccipital is convex) and runs from the dorsoncdial region of the mastoid process to the dorsal rim of the foramen magnum. The paroccipital process, if present, was very small. The occipital condyles are very large but much less salient than in the other borhyaenoids.

FIG. 9. - Mayulestes ferox, skull in occipital view: A, holotype, (MHNC 1249) ; B, reconstruction. Abbreviations: EO, exoccipital; fm, foramen magnum; Icn, intercondylar notch; JU, jugal; Ic, lambdoldal crest; mf, mastoid foramen; mp, mastoid process; doc, dorsal occipital condyle; $\mathrm{P}(\mathrm{pm})$, pars masloidea of the periotic, pgf, postglenoid foramen; pgp, postglenoid process of the squamosal; prgp, preglenoid process of the jugal; SO, stpraoccipital: SQ, squamosal. Scale bars: 1 cm .

In this respect they are more similar to those of Didelphis. On the dorsal ritn of the foramen magnum, the exoccipitals are broadly separated as observed in Pucadelphys, contrary to the condition of Didelphis. The condition in the other borhyaenoids was difficult to evaluate as in all the specimens available during this study the exoccipitals were tightly fused to the supraoccipital.
Supraoccipital. (Fig. 9) This bone occupies the dorsal central area of the occipital shicld and forms an important portion of the dorsal rim of the foramen magnum. The bone articulates ventrolarerally with the exoccipital, laterally with the pars mastoidea of the periotic and dorsally with the postpastieal. Apparently, the slimure with the postparietal is located on the lamhdoidal crest itself. The surface of the supranccipital is rclatively snooth. However, the posceriorly protruding lambdoidal crest forms a very deep fossa for the attachment of the nuchal muscles. Several small foramina are present, mainly at the base of the lambdoid crest.

Dentary (Fig. 3)
The dentary of Mayulestes is known by its horizontal ramis and fragments of the condyle and angular process. The proportions of the horizontal ramus compare favourably with Cladosictis. It is relatively high compared to didclphids and Sipalocyon and is more slender than in Proshylacyuzs and Borhyaema, The anterior part of the ramus (below the incisors, canine and p1) has a relatively straight ventrat border which makes an angle of approximately 45° with the axis of the tooth row. Below p^{2} and $p 3$ the ventral border of the ramus is slightly concave and gently convex betow the molars. This morphology is similar to that observed in Cladosictis centralis and Sipalocyon gracilis although less cmphasisod in these species than in Mayutestes ferox. Two large mental fotamina occur below the anterior root of p 2 and the middle of mI . A much smaller foramen is located below the posterior roor of p2. Mcdially, the articular surface of the symphysis is similar in shape to that of Sipalocyon and Cladosictis but slightly shorter
anteroposteriorly. Its posterior extremity is situated below the posterior root of p 2 while in the former two genera it is below the anterior root of p 3 (it is sometimes below p 2 in Sipalocyon). The articular surface is less rugose than in Sipalocyon and Cludosicits. As in those genera, the articular surface is roughly parallel to the plane of the horizontal tamus below the molars while in didelphids it is at an angle of approximately 20°. The mylohyoid groove is well narked and ends anteriorly below m 1 .

Postcranial. skeleton

Atlas (Fig. 10)
The atlas lacks the ventral arch (the intercentrum of the atlas) which was not fused to the rest of the vertebra and was lost prior to fossilization. The dorsal arch is long anteroposteriorly in its. dorsomedial part (5.5 mm) and short ventrolaterally, above the transverse process (3.2 mm). In this respect, the dorsal arch of the atlas of Mayulestes resembles more that of Borbyaena than those of Cladosictis, Sipalocyon and Prorbylacynus. This condition is also present in Pucadelphys (Marshall \& Sigogneau-Russell 1995) bat less marked. The dorsal arch of the atlas of Mayzlestes has strongly convex anterior and posterior edges and the anterior is clearly recurved ventrally in its median region. Strongly convex anterior and posterior borders of the dorsal arch are also found in Borbyarmir while it is either straight ot concave in Prothylacynuts, Cladosictie, Sipalocyen, Didelphis and Thylacinus. In Borhyatena, however, the anterior border of the arch is not recurved ventrally. The dorsal arch of Mayulestes is wide transversally and the neural canal is almose twice as wide than high as observed in Didelphis. It differs in this respect from the other borhyaenoids where the dorsal arch is shorter transversally and where the neural canal is only slightly wider than high. This condition is unknown in Pucadelphys. On the lateral extremities of the anterior and posteriot edges of the dorsal arch there are decp grooves (the posterior grooves are deeper than the anterior grooves) for the passage of the first cervical nerve and the vertebral artery anteriorly, and a ramification of the latter posteriorly. The condition of Mayulestes is different from that of all the other borhyaenoids
for which the atlas is known. In Borbyaenat the anterior groove is present but the posterior is lacking. In Prottyylacynus, Cladosictis and Sipdlocyom, the anterior sulcus is closed in an intetverrebral foramen (or atlantal foramen) and the posterior is absent. The absence of the posterior sulcus in the Santa Cruz borhyaenoids is probably a consequence of the presence of a small transverse foramen, a structure absent in Mayulestes. An intervertebral foramen is also found in Didelphis and Thylacinus but is absent in Marmosa, Perameles and Monodelplis. The condition observed in Mayulestes is similar to that observed in Pucitelphys, a lalaeocene didetphoid which has neither intervertebral nor transverse foramina (Marshall \& Sigogneau-Russell 1995).
The traniverse processes or wings of the arlas are partially broken in the specimen described here, but it is clear that they were smaller than those of the other borhyaenoids. In Mayulestes the processes are strongly constricted ar their bases. because of the depth of the arterial grooves. On the ventral border of the right transverse process (which is better preserved than the left one), ar its base, is an anteroposterior groove which was transmitting the vertebral artery posteriorly to the axis.
The anterior articular facers with the occipital condyles are more opencd anteriorly (i.e. they are facing more anteriorly than medially) than in the other borhyacnoids where they ase facing more medially than anteriorly. This condition is also found in Didelphis and Thylacinus. The posterior articular facets with the axis are simply reniform and similar to those of Didelphis. They are much less concave than the occipital facets.

Axis (Fig. 11)

The mose spectacular feature of the axis is the size of its exttemely long, triangular-shaped spinous process. It is fairly similar to those of Borbyaena, Prothylacynus and Cladosictis but clearly differs from the highly specialised process. of Didelphis (Didelphis has cervical vertebrae 2 to 5 with transversely thickened spinous processes which tend to synostose with each other). It is much longer anteroposteriorly than in Pucadelphys and any other didelphid. The dorsal edge of the spinous process of the axis of

Fig. 10. - Mayulestes ferox, holotype (MHNC 1249). Atlas: A, anterior; B, dorsal; C, posterior views, Scale bar; 5 mm .

Mayulestes is very convex anteriorly and almost straight in its posterior two thirds. The posteroventral edge is straight and oblique and forms an angle clase to 35° with the dorsal edge. The anteroventral edge is regularly concave and passes to the anterior border of the pedicles of the neural arch which contact the body of the axis in a point more posterior than in other borhyaenoids. Anteroposteriorly, the pedicles are proporrionally slorter and the whole neural arch is located in a more posterior position than in Borbyaena; Protbylatyuus and Cluelosictis: in dorsal view the visible portion of the anterior part of the body (mainly the portion corresponding to the centrum of the artas) is larger, and in ventral view the visible portion of the neural arch is also larger. The postzygapophysial facets are more widely separated than in Borbyena and the neural canal is proportionally much larger. Ventrally to the postzygapophyses, the transverse processes are divided into a large dorsal portion and a small ventral ridge. As a consequence, the transverse foramen is opened latetally and the dorsal transverse processes overhang an elongated fossa (transverse sulcus) for the passage of the vertebral artery. As in Pucadelphys, there is no transverse foramen, contrary to the condition of Borbyena, Prothylacynts, Cladosictis, Didelphis and Thylacinus.
The athantal and axial component of the axis are coossified and their suture is observable on the ventral surface of the vertebra as an clevared transverse ridge. The centrum of the vertebra (composed of the centrum of the atlas, anteriorly, fused to the centrum of the axis, posteriorly) is wide and relatively shorter than in the other
borhyaenoids. Anteriorly, it bears a small odontoid process berween the two anterior articular facets for the atlas, all three similar in proportions to those of Borhyaema. On the ventral face of the centrum are two deep fossate for the attachment of the longus colli muscle, an imporrant depressor of the head. The fossac occupy the rotal width of the body posteriorly and slighty narrow anteriorly, where the body is wider because of the anterion atticular facets (the body: of the atlas). "Ihe apices of the fossac are rounded and almost reach the base of the odontoid process. The fossae for the longus colli are more developed than in Burhaena, where they are triangular and narrow anteriorly, and in Prothylatynes, where they do not reach the base of the odontoid process. The longus colli fossae are separaned by a sharp median crest concave in lateral view and forming a small posterior rubetcle projecting veritrally. The median crest and tubercle of Mayulestes are less developed and project less ventrally than in other borthyaenoids, which could indicate a slightly weaker muscularute. The fossae are bordered anterolaterally by two crests for the attachinent of the longus capitis muscle, another depressor of the head. Since there is no transversc foramen in Mayulestes, these crests do not extend laterally on the ventral edge of the ransverse process ventrally (therefore ventrally to the vertebral artery), as it is observed in Borbyaena, Protbylacynus, Cludosictis, and Thylacinus: In Mayulestes the origin of the longus capitis was probably restricted to the anterolateral region of the ventral face of the centrum.
In posserior view, the centrum is much lower than in Borhyaena, Prothylacynus, Cladosictis and

Fig. 11. - Mayulestes ferox, holotype (MHNC 1249). Axis: A, lateral; B, dorsal views. Scale bar: 5 mm .

Thylacinus but shows a condition similar to that of Didelphis. The arricular surface for the third cervical vertebra faces posterodorsally.

Other cervical wertebrue

Tivo other partial cervical vertebrae are known (the ?third and the ?ffith). The ?third cervical vertebra is only known by its centrum, which is very low and short like that of the axis. The ?fifth cervical vertelora is beteer prescrved but is missing noss of the neural arch. The cenrrum is proportionally shorter than in the Saluta Cruz borhyaenoids. Ins ventral surface has a weakly devcloped telief, being excavated ventrally by two shallow fossac for the longus colli muscles. It clearly differs from the cervical verrebrac of Prothylacyus and Borbynena which bear a very strong ventral erest with a large posterior tubercle (extremely thick in YPM PU 15120). Dorsally, the centrum presents noo deep excavations probably related to the passage of the ventral spinal artery and its ramifications to the vertebral artery. At the base of the cransverse process is a relatively large transverse foramen for the passage of the vertehral artery. The pedicle of the neural ardh is short.

Thoracic yerteltrae (Fig. 12)

Five thoracic vertebrae are known, three anterior and two posterior. Of the three anterior vertebrac only one is complete. It is referable to T1 or T2 since the prezygapophyses are facing dorso-
medially and the postrygapophyses are facing ventrally (rangential). This condition is observed on T1 in Caluranys, Didelphis and Phatanger, but on T2 in Moundelephis and Metachirus: Since the first three genera are arboreal and the last two are terrestrial and, given the interpretation given below of the mode of life of Mayulestes (at least partially arboreal); it is more likely that this vertebra represents the T1. Its neural arch is very wide and the prezygapophyses are greatly separared. The anicular facets face dotsoruedially and not dorsally as in the more posterior vertebrac. They are locared in a lateral position, on the anteromedial edge of the transverse process and not on the anteriur edge of the neural arch. The spinous process is-long, narrow and less inclined posteriorly than in Borthyaend and Prothylacynus. Its anteriot edge is straight as in Prothylacynus and Borhymena, contrary to the condition in Chadosictis where it is concave anteriorly and where che spinous process is recurved anterodorsally. The major characteristic of that vercebra is the shornness of the pedicle of its neural arch, which is shoter than half of the length of the centrun, white it is longer in Borhyaena, Prothylacymus, Cladosictis and in didelphids. The cencrum is proportionally shorter and lowe than in Barlyaena, Prothylacynus, and Cladosictis (although ro a lesser extent in this genus). The ventral side of the centrum bears a well marked crest which separates the insertions of the longi dorsi museles as in Cludasieris. The condition of Mayulestes differs from that of Prothylarymus and Berhyaena which show no crest on the ventral side of the cenrrum of the anterior dorsal vertebrae. Two other anterior thoracic vertebrae are known by their centra only. They show the same characteristics as the vertebra described above.
The last two thoracic vettibrac were found associated with the first five lumbar vertebrae. Contrary to what is observed on the cervical and first thoracic verrebrae, the last thoracic is relatively much longer than in Prothylatynus and Cladosictis. On the neural arch, the preargapophyses are oriented less dorsally than in Prothylacymis and the articular surface of the prezygapophyses occupies all jts medial surface, while in Prozhlocynus they are overhung by a strong metapophysis. In lateral view the postzy-

Fig. 12. - Mayulestes ferox, holotype (MHNC 1249). Anterior thoracic vertebra (T?1): \mathbf{A}, laleral; \mathbf{B}, dorsal views: T ? 12 : \mathbf{C}, lateral: \mathbf{D}, dorsal views; T ? $13-\mathrm{L} 1 i \mathrm{E}$, lateral; F , dorsal views. Scale bar: 5 mm .
gapophyses are longer than high, contrary to those of Protbylacynus which are higher than long. The anterior edge of the neural spine is concave anterodorsally, its posterior edge is straight and the spine occupies the posterior two thirds of the neural arch; the neural spine is therefore slightly inclined posteriorly and the last two thoracic vertebrae of Mayulestes are anterior to the anticlinal vertebra. This condition differs from that of Protlylacymus where the neural spine of the last two thoracic vertebrae is oriented anteriorly (the vertebrae are posterior to the anticlinal vertebra) and has a straight anterior edge and a concave posterior edge. In fact, in Prothylacyuns, the posterior part of the neural arch (i.e. the neural spine and the postzygapophyses) seems to have been pulled anteriorly when compared to the condition observed in

Mayulestes. The anapophyses are proportionally longer than in Protblatanus and bear, on their lateral edge, a marked ridge for the insertion of the longissimus dorsi and sacrocaudalis dorsalis muscles. This sidge is welt-developed on the eleventh thoracic vertebra of Prothylacynus (YPM PU 15700). The centrum is relatively lower dorsoventrally than in Prothylacynus and its ventral surface if less rounded.

Lambat vertobrat (Figs 12, 13)

Five lumbar vertebrac are known and, if one assumes that Mayulestes had six lumbar vertebrae as Proadelphys, living didelphids and Cladosictis, it is the last lumbar which is missing since the five vertebate wete found associated. Like the thoracic vertebrae, they are relatively longer than in Protbylacynus and Cladosictis. The most semarkable feature of the lumbar vertebrae of Mayulestes is the shape and orientation of the neural spine. On the firse three vertebrae, they are small, low, long (anteroposteriorly), oriented posteriorly and they occupy the posterior two third of the neural arch (i.e. their anterior edge is concave anterodorsally). The spinal process is not preserved in the fourth lumbar. 'The fifth lumbar has a short (anteroposteriorly) but very high neural spine which is slightly orienced anteriorly and occupies the toral length of the neural arch. This vertebra is very similar to that of Patadelphys. Mayulestes and Iruadelphys differ in the morphology and orientation of the neural spine from the morphology observed in the orher didelphids, where the spine is generally low and oriented posteriorly or, if anteriorly, to a very slight extent. In the six lumbar vertebrae of Cladosicris (YPM PU 15170), the neural spines are high, short (anteroposteriorly) and strongly inclined anterionly, and their posterior edge is concave posterodotsally. The same condition is found in the fourch, fifth and sixth lumbar of Protblacynus, although in this genus the ncural spine is stronger, longer (anreroposteriorly) and less inclined anteriorly than in Cladosictis, On the holotype of Mayulestes, the transverse processes are intact on the fifth lumbar only. They are more slender than those of Prothylucymes and Cladosictis (to a lesser extent in this genus) but resemble those of Pucadelphys. They are propor-

FIG. 13. - Mayulestes ferox, holotype (MHNC 1249). Lumbar vertebrae; L2: A, lateral; B, dorsal views; L3: C, lateral; D, dorsal views; L4: E, lateral; F, dorsal views; L5: G, Ieteral; H, dorsal views. Scale bar. 5 mm .
tionally longer (transversally) than those of Prothylacynns (which are almost complete on the fifth and sixch lumbar of YPM PU 15700) and more recurved ventrally. Their bases occupy approximately one third of the length of the centrum while they occupy half of its length in Prothylacyuns and Clatasictis. The zygapophyses of the fifth lumbar vertebra are more everted than in Prathylatcynus and form a conspicunus X-shape figure in dorsal view as obsecved in Cladosictis. As in Prothylacynus and Cladosictis,
the anapoplyses reduce from the first to the third Jumbar vertebra; since they are small but presens in the third and absent on we fifth they were either very reduced or absent on the fourth lumbar. The centra of the lumbar vertebrae are relatively slightly lower than those of Prothylacynus but match in this respect the condition observed in Cladosictis.

Sacral vertedrae

No sacral vertubrae are prescrved in the holurype.

Caudal vertebrue (Fig. 14)

Four well prescrved candal vertebrae are known, two anterior and two posterior. The anterion caudal verrebrac are very similar to those of Cladosictis, Borhyuenu and Mrathylacynus. The slight differences observed could be related io their position in the tail (which cannot be defined with precision - possibly Cl and C 3) rather than to the actual morphology of the taxon. When enmpared to Caluromys, the morphology of the two posterior candal vertebrae contesponds to C7 and C8. When compared to Pucadelphyss, the verrebrae correspond to C8 and C9 and when compared to Cladosictis and Prathylacynus, they seem to corresponid to C 11 and Cl 2 . They are propurionally more slender and longer than in Cladusictis and Pruthylatymus. The ventral side of the centrum of both vertebrae differs from that of Didelphis, Caluromys and, to a lesser extent, Metachints, which bears a ventral sulcus for the ventral median coscygeal artery. On the edges of this sulcus attaches the sacroccygeus ventralis medialis muscle, a flexor of the tail [this sulcus does not receive the abductor muscles as stated by Marshall \& Sigogneau-Russell (1995), a rerm which is inappropriate in the case of a flexion of the taill. In Mayulestes, the sulcus is present but very weak; it is observable in the anterior and posterior third of each of the two posterior caudal vertebrae while, in the median region of the cencrum. it is redtuced to a flar strip. A similar condition is observed on CS to C8 of Pucadelplys andinus (specimen YPFB Pal 6106) and Mnmodelphis. This feature shows some individual variation since the sulcus is more pronounced in another specimen of Pucadelphys (YPFB Pal 6110) whose

Fig. 14. - Mayulestes ferox, holotype (MHNC 1249). Caudal vertebrae. C?1: A, lateral; B, dorsal views; C?3: C, lateral; D, dorsal views; C?8: E, dorsal view; C?9: F, dorsal view. Scale bar: 5 mm .

C7 and C8 have been further prepared. No sulcus is observed in Marmosa. The anterior and posterior transverse processes of the posterior caudal of Mayulestes are similar in shape and relative size to those of Caluromys and Pucadelphys. They are slightly larger and more blade-like than those of Didelphis, Metachirus. Monodelphis and Marmosn where the processes are more knob-like. The morphology of the posterior caudal verrebrae of Mayulestes denotes an important strength of the rail musculature that could be related to preliensility (see below for discussion).

Ribs (Fig. 15)

Four ribs of the holorype of Maylulestes are known. Two are probably the first or second right and left ribs. They have a smaller tuberculum and a capitulum wider and flater ar its base than in Borhydena. One of the other two ribs (R8?) is a relatively anterior rib since iss curvature is well pronounced. It has a relatively small tuberculum and a long capitulum. It is regularly curved and does not show an angulation between the ruberculum + capitulum region and the rest of the bone, as it is observed in Borhyaenta and Cladosictis. The other rib (R10 ar 11) is posterior and has a weaker curvature. Both ribs were flatter than in Borhyaent and Cladosictis.

Forelimb

Scapula. (Figs 16, 17) In the following description, the spine of the scapula will be oriented vercically.
The general shape of the scapula is triangular and significandly differs from that of the other

FIg. 15. - Mayulestes ferox, holotype (MHNC 1249). Ribs: A , right R 1 or 2 in anterior view; B , left R 1 or 2 in anterior view; C, left R?8 in posterior view; D, right R10 or 11 in posterior view. Scale bar: 5 mm .
borhyaenoids, Metachirus, Pbilander and Didelphis which is roughly oval-shaped or quadrangular; it shows important similarities with those of Caluromys and Monadelphis. In Mayulestes, the anterior edge of the scapula (i.e. of the supraspinatus fossa) presents a marked angulation (almost a right angle) when it is regularly convex in other borhyaenoids. The anteriorly protruding supraspinatus fossa of Mayulestes is very similar to those of Monodelphis and Caluramys (although a little more rounded
in this genus). The posterior border of the seapula (i.e. of the infraspinatus fossa) is slighțy concave as in Calaromys and is oriented posterodorsally, whereas it is convex in the orher borhyacnoids and in Didelphis, and straight in Pucadelplys.
The supraspinatus fossa is much wider anteropostcriorly in its middle region than the infraspinatus fossa bur is slightly shorter proximodistally, Its surface is a little superior to that of the infraspinatus fossa as observed in Caluromys. Both fos-

Fig. 16. - Mayulestes ferox, holotype (MHNC 1249). Right scapula: A, lateral, B, medial, C, proximal views. Scale bar: A, B, 1 cm ; C, 5 mm .

Fig. 17. - Mayulestes ferox, holotype (MHNC 1249). Right scapula: A, lateral; B, medial; C, proximal views. Abbreviations: ac, acromion; cp, coracoid process; gc, glenoid cavity; hp, hamatus process; it, infraspinatus fossa; n. neck; sf, supraspinatus fossa; shp, suprahamatus process; sp; spine; ssct; subscapular fossa; st, supraglenoid tutercle. Scale bar: 1 cm .
sae are very narrow in their proximal part and less extended anteroposteriorly than in the oher borhyaenoids and Didelphis. The supraspinatus fossa is much narrower in its proximal portion than in the Santa Cruz borhyaenoids where its anteroproximal border strongly protrudes anteriorly, The morphology of the scaputa of the Santa Cruz borhyacnoids is also present to a lesser extent in Dirlelphis while Pucadelphys resembles Mayulestes in rhis respect, The supraspinatus fossa is relatively shallow while the infraspinatus. fossa is very deep, with its posterior border strongly deflected laterally, a condition common in the other borhyaenoids whose scapula is known.
The infraspinatus fossa is narrow and widens moderately toward its distal end contrary to the condition of Prothylacynus and Borbyaena. When the spine is oriented vertically, the highest point of the scapula is located almost at the postetodorsal angle of the infraspinatus fossa as in Caluromys, while in Cladosictis, Didelphis, Metachires and Marmosa it is located at the dorsal extremity of the spine or at the same level as the angle. The posterodorsal angle of the scapula receives the origin of the teres major posteriorly and the insertion of the rhomboideus anteriorly. As in Caluromys the spine is more elevated than in the other didelphids. It is slightly deflected
posteriorly and its lateral cdge is convex in anterior view. The acromion is large and forms a triangular plate which bears a long anterior process, the hamatus process, and a shore posteror process, the suprahamatus process (the paracromion), located behind the anterior process. Since it is very thin and fragile, it is generally lost in fossils; it is broken in all the borhyaenoids specimens described by Sinclair (1906). In anterior view the acromion of Mayulestes is flat and the apex of the hamatus process is slightly bent medially. Is is similar to that of Caluromys but it differs from that of Didelphis where the hannatus process is shorter and less individualised. In Pucadelphys, the acromion also has a long hamatus process but the whole structure is smaller than in Mayulestes. In medial view, the ventral extremity of the acromion is visible below the glenoid fossa as in Pacadelphys [alrhough this is not shown on figure 36 of Marshall \& Sigogneau-Russell (1995), it is clear in the further prepared right scapula of YPFB Pal 6106 (Fig. 18)], Marmosa and Caluromys (to a lesser extent), contrary to Didelphis where the acromion does nor extend ventrally below the glenoid fossa. In lateral view, the hamatus process overhangs anteriorly the supraglenoid tuberosity and, in proximal view, the anterior apex of the hamatus process is slightly anterior to the cora-

${ }^{\text {Fig. 18. - Pucadelphys andinus (YPFB Pal 6106). Right sca- }}$ pula: A, lateral: B, medial; C, proximal views. Scale bar: 5 mm
coid process. This condition is similar to that observed in Calurumys while in the orher didelphids the anterior apex of the hamatus process is posterior to the anterion edge of the supraglenoid ruberosity. The condition in Pucadelphys is close to that observed in Mayulestes hut the acromion is slightly less anterior than in Mayulestes and apparently relarivedy slightly larger (fig. 18). The lateral side of the acromion bears part of the origin of the deltoideus muscle and, on the anterior border of the acromion, is inserted the arlantoacromialis muscle ($=$ onouransversatius muscle pro parte).
The neck is the portion of the scapula located above the glenoid fossa at the level of the supracoracoid incisure, also called the scapular notch (which marks the ventral extremity of the supraspinatus fossa). It is long, narrow and well marked as in Caluromys and Pucadelphys, contrary to what is observed in the other borhyaenoids and Didelphis.
The head is small and bears an anteroposteriorly elongated glenoid cavity. It is more flatrened transversally than in Cladosictis, Borbyaena, Prothylacynus and Thylacinus, bur less than in Didelphis. The coracoid process is a small apoplysis of bone strongly recurved medially, where the coracobrachialis muselc originates. The coracoid process of Mayulestes is longer, more slender
and mote recurved medially than in Borhyaena, Prothylacynus, Cladosictis, Pucadelphys and Didelphis. As in Cladosictis, it is nor well separated from the supraglenoid tubercle, contrary to what is observed in Thylacinus and, to a lesser extent, in Didelphis. As in Calurmays, Metachirus and Marmosd, the coracoid process extends ventrally further than the supragtenoid vubercle, contrary to the condition observed in Pucadelphys and Didelphis [Marshall \& SigogneauRussell (1995, fig. 36) have confused the coracoid process and the supraglenoid tubercte or tuber scapulacl. The supraglenoid tubercle bears the origin of the biceps brachii muscle, a powerful flexor of the ellow. On the medial side of the scapula, just dorsal to the posteromedial extremity of the glenoid cavity, is a shallow fossia for the origin of the caput longum of the triceps brachii muscle. That muscle attachment is relatively weak when compared to Didelphis or Thylacinus. However, the weakness of this atachment scenis to be common in borhyaenoids since it is also litele developed in Borbyaeru, Prothylacynus and Cladosictis.
On the medial side of the scapula, the subscapularis fossa reflects the relief of the lateral side of the bone. It is strongly convex in its posterior region corresponding to the infraspinatus fossa white the relief is moderate in the anterior region. In the dog (Evans \& Chtistensen 1979). the subscapularis fossa receives the insertion of the serratus ventralis muscle in its proximal third and the origin of the subscapularis muscle in its two distal thirds. The subscapularis is inserted on the lesser tubercle of the humerus and the setratus ventralis originates on the transverse processes of the last five cervical vertebrae. In Didelphis, the latter arises from the transverse processes of the last fout or five cervical vertcbrae (Jenkins \& Weijs 1979).
Humerus. (Figs 19, 20) Both humeri of the holorype of Mayulestes are known. They show a significant difference in their length and proportions of their proximal epiphysis, although no pathological deformation can be observed. This variation is probably the consequence of a slight post-mortem deformation of the bones since the right humerus has been slightly compressed anteroposteriorly in its proximal half, squeezing

Fig. 19. - Mayulestes ferox, holotype (MHNC 1249). Right humerus: A, anterior; B, posterior; C, lateral; D, medial; E, proximal views. Scale bar: A-D, $1 \mathrm{~cm} ;$ E, 5 mm .

Fig. 20. - Mayulestes ferox, Molotype (MHNC 1249). Right humerus: A, anterior; B, lateral; C, posterior; D. medjal views. Abbreviations: bg, bicipital groove; c, capitulum; dpc, deltopectoral crest; dt, deltoid tuberosity; ec, epicondyloid crest; ef, entepicondylar foramen; gt, groater fubercle: h, head; le, lateral epicondyle; Il. lesser tubercle; me, medial epicondyle; of, olecranon fossa; rf, radial fossa; \mathbf{t}, Irochlea: $\mathbf{I I}$, Incipilal line; $\mathbf{t t m}$. luberosity for the teres major. Scale bar: 1 cm .
the epiphysis and the bicipital groove. The left humerus, which seems to have suffered very lirtle (if any) deformation, will be referred to in the following description and comparison. The bone will be described vertically.
In proximal view, the proximal epiphysis is relatively shorter anteroposterionly than in the genera used for comparison in this study (other borhyaenoids, didelphids and Thylacinus). The condyle for articulation with the scapula (the liead) is slightly wider than long in Mayulestes as in Pucadelphys (Figs 21, 22), while in Prothylacyntus it is as long ass wide. In Caluromys, Chironectes, Didelphis, Monodelphis and Marmosa it is slightly longer than wide, and in Metachirus it is much longer than wide. In lateral view, the condyle has a posteroproximal orientation. However, the proximal component of this orientation is more important than in Prothylacynus, Cladosictis and Didelphis, whose condyle seems to be more "recurved" posteriorly. This is especially clear in the shape of the posterior side of the shaft just below the condyle, which is strongly recurved and directed distally in Prothylacynus, Didelphis and Thylacinus, while it is oriented posteroproximally in Mayulestes.

This condition is also clearly observable in posterior view of the humerus where the visible portion of the condyle is much more reduced in Mayulestes and Caluromys than in the orher borhyaenoids and didelphids. In fact, the orientation of the condyle of Mayulestes resembles more thar of Caluromys than any other genus. The greater tubercle is slightly lower than the condyle as in Didelpins and Caluromys, while in Protbylacynus it is slightly higher and in Thylacinus it is much higher. In proximal view the greater tubercle is elongated, more than twice longer than wide and obliquely oriented. In these respects, it is similar to those of Prothylacynus, Caluromys and Didelphis, bur differs from that of Myplacinus which is very thick and massive. The greater tubercle of Mayulestes is, however, more oblique and less salient anteriorly than those of Prothylacynus and Thylacinus where it greatly extends anteriorly, well beyond the lesser tubercle. The lesser tubercle is rounded and separated from the condyle by a sulcus. It is relatively salient anteriorly and laterally and almost reaches the level of the greater tubercle anteriorly. It is fairly similar to those of Pucadelphys, Didelphis and Caluromys but clearly

A

B

C

D

E

Fig. 21. - Proximal view of the proximal extremity of the humeri of: A, Mayulestes; B, Prothylacynus; C, Pucadelphys; D, Caluromys; E, Didelphis. Not to scale.
differs from that of Protbylacynus which is clongated, obliquely oriented, appressed against the condyle, and which remains far behind the greater trochanter anteriorly. These conditions of Prothylacyinus are observed in the dog, a terrestrial cursorial carnivoran.
The hicipital groove is well marked and faces anteromedially. It extends on the anterior side of the shaft of the bone where it is deeper than in Prothylucyrus, Caluromys and Didelphis, Laterally, below the greatet ruberde, on the proximal 40% of the length of the shaft, there is a sharp and elevated cricipital line. lt is more developed and more salient laterally than in Prothylacynus and Didelphis, where it is very wak, but resembles that of Pucudelphys which is very prominent.
On the anterior side of the proximal two thirds of the shaft, the deltopectoral crest runs distally from the anteromedial angle of the greater rubercle on approximately 60% of the length of the bone. The deltopectoral crest is relatively narrow, salient and slighty concase laterally, It resembles those of Didelphiss and Caluromys but differs from that of Ptoradelphys which is shorter, and from that of Prothylayuus which is much thicker and straight dhe later features are even more pronounced in Thylacinus. The deltopectoral surface, limited by the deltopectoral crest anteriorly and the tricipital line posterintly, is relatively wide and concave and faces more anteriorly than laterally. In these respects it resembles that of Pucadelplys and living didelphids but differs from those of Prothylacynus and Thylacinus which are narrow, flat or convex and face more laterally than anterinrly. On the anterior bordes of the ericipital line. on its proximal half, is a very salient crest oriented laterally and which receives the origin of the caput lateralis of the tri-
ceps brachii. This tricipital crest approaches the condition observed in Pucadelphys and Monodelphis, although it is slightly less salient in these genera. It differs from those of Prothylacputus. Didelphis and Thylacinus which are much weaker.
On the medial side of the proximal third of the diaphysis, helow the lesser rubercle, is a relatively weak tuberosity for the teres major muscle as in Didelphis, and the fossa posterodistal to the lesser ruberele is small and shallow. That region of the humerus of Mayulestes strongly differs from that of Protbylacynus where the cuberosity for the teres major is very large and salient, and forms a sharp crest which runs proximally towards the lesser tubercle and forms a deep fossa located distally to the posterolateral angle of the lesser rubercle and the posteromedial side of the condyle. Laterally, the fossa is limited by a wide and rounded ridge which runs distally from the posterior edge of the condyle along the proximal half of the posterior side of the diaphysis. On the proximal exremity of the fossi and the ridge is located the origin of the accessory head of the triceps which was very strong in Prothylacgnus. Since in Maynlestes the relief of the atachments of this musele was intermediate between those of Didelphis and Caluromys on the one hand and Prothylatguns on the other hand, it is likely that the muscle was stronger than in the former but much weaker than in the later.
The distal extremity of the humerus is markedly flattened anteroposteriorly and plate-like as in all the borlayaenoids and didelphids. The cpicondyloid crest is very large and extends along about 30% of the diaphysis: its proximal extremity reaches a point, on the shaft, lateral to the distal extremity of the deltopectoral crest as in

Prothytucynus. This point of the shaft is located more proximally than in Prothylacynus. In Cladosictis, the distal extremity of the deltopectoral crest is in a far more distal position than in Protbylacymus and Arayulestes and reaches the distal quarter of the bone; in this genus, the proximal extremity of the epicondyloill crest is located more proximally than the distal exteremity of the deltopectoral eress. In Mayulestes the proximal extremity of the epicondyloid crest has a regular concavoconvex contact with the diaphysis as in Cladosicis, Metacthirus and Marmosiz and is not recurved anteriorly; it differs from the condition of Prothylacynus, Pacadelphys, Didelphis and Caluromys whose epicondyloid crest is limited proximally by a marked notch and recurved anterionly in chat region.
On the medial side of the humerus, the entepicondyle is very long and strongly projected discomedially, more than in Prothytacynus, Cladosititis and much more than in Didetphis and Calluramys. It resembles the condition observed in Pusudelphys. It almost reaches the level of the medial erest of the trochlea distally (Fig, 22) as in Pucedelphys, contrary to the condition observed in Prothylacynus and most living didelphids. Its apex, where the flexors of the carpus and digits originate, is rounded and subcircular as in Prothylucynus and Pucadelphys and not clongated and oval-shaped (in proximodistal vicw) as in Didelphis and Cuturomys. The ridge of bone that uniss the distal extremity of the deltopectoral crest with the apex of the entepicondyle and passes above the entepicondylar foramen is more salient anteriorly than in Didelphis, Caluromys, Prothylacynus and Cladosictis, which contribures to give a more twisted aspect to that part of the humerus of Mayulestss than in the genera cited above. Mayulestes resembles Putadelphyys in this respect. On the anterior side of the bone, just proximal to the capitulum, is a radial fossa deeper than in Prothylacynus, Cladosictis, Didelphis and Calurnmys.
The entepicondylar foramen is large and ovalshaped. It is proportionally similar in size and shape to those of Prothylacynus, Cladosictis, Didelphis and Caluromys. The groove for the passage of the median artery (the internal articular sulcus of Osgood 1921), located between the

Fig. 22. - Pucadelphys andinus (YPFB Pal 6106). Left humerus: A, anlerior; B, posterior; C, medial; D, lateral, E, proximal views. Scale bar: 5 mm .
medial border of the trochlea and the lateral edge of the epicondyle, is deeper than in Didelphis, Caluromys and Cladosictis but resembles that of Prothylacynus. On the posterior side of the bone, the olecranon fossa is much shallower than in Prothylacynus, Cladosictis and Didelphis bur a litetle deeper than in Caluromys where it is very shallow. In posterior view, the trochlea bas relatively well marked crests as observed in Didelphis, bur not as sharp and salient as in Prothylacynus. As in Didelphis, the

Fig. 23. - Mayulestes ferox, holotype (MHNC 1249). Left ulna: A, anterior; B, lateral; C, medial views. Scale bar: 1 cm .
trochlea of Mayulestes is deeper than in Prothylacyntus, it greatly differs from the trochlea of Calteromys which is wider, deeper and has lower crests than in Mayulestes. The capitulum is more salient and convex than in Prothylacynus and Cladosictis, less than in Caluromys and Pucadelphys, but resembles that of Didelphis. In Prothylacynus the capitulum is less elongated transversely, longer proximodistally and, as a whole, more rounded. The distal articular surface of Puradelphys differs from that of Mayulestes in its slightly narrower trochlea with a lower medial crest and its wider capitulum.
Ulna. (Figs 23, 24) The bone is notably short, as are those of Borbyaena, Prothylacynus and Cladosictis, and differs from the longer ulnae of Thylacinus, Didelphis and Caluromys. The proximal half of the bone is markedly recurved anteriorly as in P'ucadelphys (Fig. 25). It strongly differs from those of Prothylacynus and Cladosictis, which have a globally straight ulna with a posterior border concave in its middle third, and from those of Borbyaena and Tbylacinus, which are bent posteriorly. It resembles the
condition observed in Caluromys but differs from that of Didelphis where the proximal extrenuity is only slightly bent anteriorly.
In anterior view, the olecranon and the articular area are markedly deflected medially as it is observed, to a lesser extent, in Borbyaena, Pucadelphys and Didelphis but contraty to Prothylacynus, Cladosictis, Thylacinus and Caluromys. In lateral view, the posteriot and proximal edges of the olecranon of Mayulestes form an angle of more than 120°. It resembles that of Calturomys where the angle is smallet but clearly greater than 90°. It differs from those of Borbyaena, Prothylacynus, Cladosictis, Thylacinus, Didelphis, Chironectes, Metachirus and Caluromys which almost form a right angle, sometimes a little less than 90° as in Borhyaena, or a little more, as in Didelphis. The condition of Marmasa and Pucadelphys is close to that of Mayulestes. In antetior view, the olecranon is long as observed in Borbyacna, Protbylacynus, Cladosictis and Thylacinus. It is slightly longer than in Didelphis, Caluromys and Chironectes. The medial side of the olecranon and proximal half of the shaft bear

Fig. 24. - Mayulestes terox, holutype (MHNC 1249). Leit ulna: A, mediai; B, anterior; C, lateral views. Abbreviations: bo, beak of the olecranon; brf, brachialis fossa; cop, coronoid process; ccl, crest for attachment of the posterior and transverse part of the ufnar collateral ligament, lap, fossa for the abductor pollicis fongus and extensor indicius propius; fll, fossa for the flexor digitorum profundus; ioc, interosseous crest; o, olecranon; prr, pronator nidge; rdn, radial rotch; sp, styloid process; spe, supinator crest; spi, supinator fossa; stecu, sulcus for the tendon of the extensor carpii ulnaris; trn, trochlear notch. Scale bar: 1 cm .
a very deep fossa for the flexor carpii ulnaris and flexor digitorum profundus. That fossa is much deeper than in any of the three bortyaenoid compared here to Mayulestes (although Prothylacynus has a deeper fossa than Cladosictis and Borbyaena). The fossa of Mayulestes is also deeper than in Didelphis but approaches the condition observed in Caluromys and Marmosa. The flexor fossa is limited posteriorly and proximally by an extremely strong crest for the atrachment of the posterior and transverse parts of the ulnar collateral ligament.
In medial view, the trochlear notch (= greater sigmoid cavity $=$ articular surface for the humerus) is relatively wide open (in medial view) and shallow as in Caluromys (although to a greater extent than in this latter genus). It differs from Borhyaena, Prohbylacynus, Thylacinus, Cladosictis, Didelphis, Cbironectes and Metachirus, where the trochlear notch is very deep, concave and less open (alchough this is less marked in Cladosictis), but strongly resembles the condition observed in

Caluromys. In anterior view, the beak of the olecranon (the proximal crest of the trochlear notch) is less salient than in the other borhyaenoids but more than in Caluromys; it approaches the condition of Didelphis. Its width is greater in Mayulestes than in didelphids but resembles in this respect the condition observed in other borhyaenoids. The coronoid process, the medial extension of the distomedial portion of the trochlear notch, is large and oriented mediodistally. It differs from that of the Santa Cruz borhyaenoids which is stronger, longer and protrudes medially. Among didelphids, it resembles that of Caluromys in this respect and differs from those of Pucadelphys, Didelphis and Metachirus. The radial notch ($=$ lesser sigmoid cavity $=$ articular surface for the radius) is located distal and lateral to the trochlear notch (articular surface for the humerus) and faces anterolaterally. The line of contact between the humeral and radial surfaces has anr anteromedial-posterolateral orientation. It is a low ridge anteromedially and it is flat and
continuous posterulaterally. In other words, the radial and humeral facets have an angular contact anteromedially and a flat contact posterolaterally. In the other borhyacnoids and in Thylacimus, the radial notch is always separated from the rrochlear notch by a sharp crest anteromedially and by a small ridge posterolaterally (i.e. the angle between the two atticular surfaces is more pronounced). In Protbylacymus, Borhyaena and Thylacinus the angle between the anteromedial contact of both articular surfaces (in anterior view) is equal to or smaller than 90°; it is more than 120° in Mayulestes. In the Didelphidac the angle varies around 90° but can be close to 120° in some specimens of Didelphis or more in Caluronys. The radial norcl is shallow and does not excavate the anterolateral face of the ulna as in the Santa Crup, borhyaenoids and Thylacinus. It is roughly triangular and not divided into two portions by a proximal inflexion of its distal border as observed in the orher borhyacnoids and Thylacinus. In Mayulestes and Caterromys, this articular surface is almost paralle! to the diaphysis, bur, contrary to what is observed in Mayulestes, the medial part of the radial notch in Caluramys is not in contact with the trochlear norch anteromedially.
Distal to the coronoid process on the anteromedial side of the ulna is a well-developed laterally oriented fossd, for the insertion of the brachialis and biceps muscles. It differs from that of didelphids which is slightly larger and faces anterintly. On the anterior face of the diaphysis, laterally, is a well marked supinator crest which runs distally from the lateral edge of the sadial articulation. Between this crest and the lateral border of the brachialis fossa is an elongated depressed area facing anterolaterally. This fossa and the supinator crest probably represent the origin of the supinator ($=$ supinator brevis). This muscle is absent in Didelphis (Coues 1872) and probably also in the other living didelphids since none of them has a true supinator crest and fossa. In didelphids, the supination function is performed by the brachioradialis. In Claclosirtis, the supinator crest is present but smaller than in Mayulestes and this structure is even smaller in Prothylachats and Thylacinus. It is absent in Borbyatena.
On the anterolateral edge of the shaft is a robust

Fig. 25. - Pucadeiphys andinus, holotype (YPFB Pal 6105). Left ulna: A, anterior; B, lateral; C, medial views. Scale bar: 5 mm .
interosseous crest which is in continuity with the supinator crest. It is more salient than in Didelphis, Metachirus and Borhyaena where it is fairly sounded. It is clearly not as sharp as in Calluromys but approaches the condition of Prothylacyuns. On the lateral side of the shaft is an clongated depression, relatively deep in the middle third of the shaft but becoming shallower in its distal extremity. This area cortesponds to the origin of the abductor pollicis longus and probably to the extensor indicus proprius fthe extensos pollicis longus is absent in Didelphis (Cones 1872) and probably in didelphids in general]. The laceral fossa of the ulna of Mayulestes is deeper than in most of the living didelphids. excepe Caluromys where the fossa is more pronounced. The condition of Mayulestes is similar to those of Protbylacyutes and Cladosictis but clearly differs from those of Borbyaena and Thyacinus where the fossa is very reduced.
Ont the medial side of the distal quarter of the diaphysis is a well-developed crest for the origin of the pronator quadrarus. It is sharper than in the Santa Cruz borhyaenoids and approaches the condirion observed in Pucalelphys and some living didelphids (Didelphis, Monodelphis). On

Fig. 26. - Mayulestes ferox, holotype (MHNC 1249). Left radius: \mathbf{A}, anterior \mathbf{T} B, postenor, \mathbf{C}, tateral; \mathbf{D}, medial; \mathbf{E}, proximal; F, distal views. Scale bar: $A-D, 1 \mathrm{~cm} ; E \cdot F, 5 \mathrm{~mm}$.
the anterolateral side of the distal extremity of the diaphysis is a shallow groove which extends on the epiphysis and probably received the tendon of the extensor carpii ulnaris. This structure

Fig. 27 - Mayilestés ierox, holotypg (MHNC 1249). Left radius: A amerior: B, Doslerior views-Abbreviations: bt, bicipilal tuberosity: ptapl, passage of the endon for the abductor pollicis longus; sp. styloid process: stecr, sulcus for the tendon of the extensor carpii radialis: stedc sulcus tor the tendon of the extensor digitorum communis; ul. ulnar facet. Scale bar: 1 cm .
is absent in Chadusictis, Borhyaena and Thylacinus. It is well-developed in Prothylacynus, Didelpbis and Caluromys.
The styloid process of the ulna of Mayulestes is small, regularly conical and flatiened anteroposteriorly. It diflers from those of the other borhyaenoids which are nore rounded and bear a clear anteromedial notch.
Radius. (Figs 26, 27) The bone is short as the ulna and markedly recurved postctiorly like those of Protbylacynus, Cladosictis, \%hylatinus, Didelphis and Caluronnys, but differs from that of Borbydena which is relatively straight. As preserved, the humeral facet is strongly oval-shaped (almost twice longer than wide) and resembles those of Cladosicis, Borlyndena and Thylacinus but differs from the humeral facets of Prothplacynus, Didelpbis and Caturombs which tend to be less elongated transversally. However, it is likely that the anterior border of the artichlar lacet has been slightly eroded (and perhaps anteroposteriorly compressed) during fossilisittion. 'Therefore, it is probable that the humeral articular facer of the radius of Maytlestes was slightly less transverse than what is actually observed on the only known radius of Mayulestes, possibly approaching the condition
of the living didelphids. The ulnar facet is very short proximodistally. It is shorter than in Prothylacyuus, Chadosictis and Borbyacma and much shorter than those of Didelphis and Caluromys. The hicipital tuberosity is weak; it is smaller and located further distally on the shaft than in Borbyaena and Cladosirtis but resembles the condition of Prothylacynus. On the lateral edge of the distal half of the shaft is a conspicuous ridge limited by shallow grooves anteriorly and posreriorly and where the radial part of the origin of the abductor pollicis longus probably inserted. This ridge is better marked than in Borbyaenat. Cladosictis, Thylacimus and Didelphis but considerably weaker than in Prothylacynus and Caluromys. In the latter, it extends as a very thin and silient blade from the distal border of the bicipital tuberosity (a little inore distal in Prothylacynus) to the lateral side of the distal extremity of the shaft.
The distal epiphysis bears a well-developed styloid apophysis which is better individualised than in Burhyertedend Cladosictis and larger than in Didelphis and Caluromys. It roughly resembles that of Prothylacymets. On the anterior side of the distal cpiphysis. laterad to the styloid process, are two shallow grooves for the passage of the tendon of the extensor carpi radialis medially and extensor digitorum communis laterally. The medial side of the styloid process is a flat area that transmitted the tendon for the abductor pollicis longus. Those structures are hetter individualised than in the other borhyaenoids bur a little less than in Didelptis; their development is similar to that observed in Caluromys. In distal view of the bone, the distal epiphysis is flattened anteroposteriorly, the scapholunar articulation is oval-shaped, very concave, and the styloid process is located anteromedially, It differs from the condition of the other borhyaenoids, Thylacinus and Didelphis, where the scapholunar articulation is shallower and where she styloid process is generally thicker and located medially. It resembles the condizion ubserved in Caluromys although in this genus the styloid process is located medially and the articular surface is shallower and wider. The distal epiphysis of the radius of Mayulestes is not thickened medially and, on its lateral side, the ulnar facet is hardly discernible.

Fig. 28. - Mayulestes ferox, holotype (MHNC 1249) Unciform: A. dorsal; B, proximal views. Abbreviations: cu, articular facet with the cunelform; Iu, articular facet with the lunar; moIV, articular tacel with the mclV ; $\mathrm{mcV}_{\text {, }}$ articular lacel with the mcV . Scale bar: 2 mm .

The lateral side of the distal exuremity of the shaft is not thickeued and not excavared to receive ulna.
Carpus. (Fig. 28) The only bone known of the carpus of Mayulestes is the right unciform. The anterior side of the bone is roughly triangular with a developed medioproximal process which articulates with the lunar as in Didelphis. The unciform of Borhyaena (YPM PU 15701) (Sinclair 1906, pl. 5t, fig. 4) is partially broken. However, it appears to have been more quadrate in anterior view and the lunar process must have been more massive than in Mayulestes. The articular facet for the cuneiform is very sigmoid and faces proximolaterally as in Didelphis while it faces more proximally in Borbyuena. The arricular facet for the MclV and V is triangulat as in Didelphis and Borhyaem.
Metacarpus. (Fig. 29) The left McIII of the holotype is preserved. It is incomplete and lacks the distal epiphysis. On the proximal epiphysis, the aroicular face for the McIV is more concave than in Cladosicris and Didelphis. Contrary to the condition observed in Didelphis, the part of the epiphysis which bears this faces protrudes laterally.
The left McV of the holotype is known. It is more slender and longer than those of Cladosictis (YPM PU 15046), Sipalocyon (YPM PU 15154) and Borlyzana (YPM PU 15701). The bone is flatened dorsoplantarly, a feature which is not found in the Santa Cruz borhyaenoids and didelphids. The epipliyses are Hatrened in the same plane, i.e. their main axes are parallel. As a result, when the proximal epiphysis articulates

Fig. 29. - Mayulestes ferox, holotype (MHNC 1249). McV: A, dorsal; B, medial views; McII: C, dorsal view. Scale bar: 5 mm
with the McIV, the flexion axis of the distal epiphysis of the McV tends to be closer to a perpendicular than to a parallel position in telation to the dorsopalmar plane of the manus. Therefore, the plane of articulation of digit V tends to be perpendicular to that of digit III. In Didelphis, the proximal epiphysis is flattened utansversely and roughly perpendicular to the dorsopalmar plane. However, the plane of the distal epiphysis is not parallel that of the proximal (as in Mayulestes) and the articulation plane of digit V makes an angle of approximately 120° with that of digit III. The medial surface of the proximal epiphysis (which articulates with the McIV) is very salient in Mayulestes, and almose forms a small condyle thus indicating a good mobility of the finger (especially abduction and adduction), This articulation is less conves in Didelphis. On the distal epiphysis, in Mayulestes, the condyle is smaller but more convex than in Didelphis and there is a well marked articular fossa, while it is almost absent in Didelplis. This condition denotes a grearer mobility of the fingers in Mayulestes. Furthermore, as in Didelphis but to a greater exrent the distal epiphysis is recurved medially. In Sipalocyon and Cladosichis the McV are straight and in Borhyaena the distal epiphysis is recurved laterally.

Hindlimb

Pelvis. (Figs 30, 31) The majot characteristic of the pelvis consists in the shape and proportions of irs ilium. The ilium is approximately 57% of the rocal length of the bone as in Cladosictis (in YPM PU 15170). It is similar to the condition found in Thylacinus (AMNH 35244) where the ilium is approximately 54% of the total length of the bone but significantly differs from Didelphis and Caluromys where the proportions are 66% and 67% respectively. The body of the ilium (the pottion of the bone between the wing anteriorly and the acetabulum posteriorly) is longer and more slender than in Cladosictis, Prothylacynus and Thylacinus but it is shorter than in Caluromys. It is Fairly similar to that of Didelphis and P'ucadelphys. 'The wing is longer than in Pucadelphys but shorter than in Didelphis, Marmosia and Caluromys. It approximates the relative size and proportions observed in Prathylaymus and Cladosictis.
In lateral view, the wing of the ilium has a roughly rectangular outline. Its dorsal edge is slightly convex and its ventral edge is weakly concave. In this respecr ir approaches the condition observed in Cladosictis and Thylacimus. However, in these genera, as well as in Protbylacynus, the profile of the dorsal edge of the ilium is less salient dorsally, and gives the wing a more triangular morphology.
The posterodorsal jliae spine is well marked in Mayulestes but it is much less developed than in Cladosictis and in Prothylacymus, where it is extremely salient and forms the antcrior edge of a very deep greater sciatic notch. The anterodorsal iliac spine is virtually absent in Mayulestes and that angle of the ilium is rounded and certainly does not deserve the name of spine. In Prothylacynus, Cladosiatis and Thylacinus, the anterodorsal angle of the ilium is even more rounded than in Mayulestes and gives the jlium a ventrally deflected shape. This is emphasised by the morphology of the ventral edge of the ilium, more concave in Prothylacyrius, Cladosictis and Thylacimus than in Mayulestes. Furthermote, the anteroventral ihac spine is much more salient in Prothylacynus, Cladosictis and Thylacimus than in Mayulestes. On the medial side of the iliae spine are inserted the quadratus lumborum (also on

Fig. 30. - Mayulestes ferox, holotype (MHNC 1249). Right innominate: A, lateral; B, dorsal; C, ventral views. Scale bar: 1 cm.

Fig. 31. - Mayclestes ferox, holotype (MHNC 1249) Right Innominate in lateral view. Abtereviations. ac, acelabulum; adis, anlerodorsal iliac spine; af, acetabilar fossa; avis. anteroventral iliac spine; bii, body of the ilium; gl. giluteal tossa: gsn, greater sclatic nolch; ter iliopubic eminence; IH, iliac lossa; IL. ilium: IS, isctrum; isp, ischatic spine; it ischiatic tuberosily, is. lunale surface: of obturator foramen; pals, posterodorsal illac spine; ssm, smaller sciatic noteh; trf, tuberosity for the rectus femoris; wil, wing of the iiium. Scale bar: 1 cm .
the ventronedial border of the ilium), a powerful flexor of the vertebral column and part of the erector spinae (also on the dorsomedial face of the ilium), the major extensor of the vertebral column. In Mayulestes, a small iliac tuberosity or posteroventral iliac spine is present while it is absent in Prothylacynus, Cladosictis and Thylacinus. In Didelphis and Calaromys, the ilium is longer and narrower than in Mayulestes and the iliac spines are relatively smoorh, like in Mayulestes. In Pucudelphys, the ilium has an intermediate morphology berween those of Mayulestes and the Santa Cruz borhyaenoids: as in the former, there is a clear posteroventral iliac spine but, as in the latter, the posterodorsal iliac spine is more salient than in Mayulester, the greater sciatic notch is well marked, and the very rounded anterodorsal angle and the concave ventral edge of the ilium give the bone a ventrally deflected morphology.
The lateral side of the wing of the ilium of Mayulestes bears a low and rounded ridge which arises from the body of the ilium, runs anteriorly and vanishes in the anterior third of the wing. That ridge is absent in Prothylacynus and Cladosictis and very poorly marked in Thylacinus. In Caluromys, the ridge is more pronounced than in Mayulester and reaches the anterior extremiry of the ilium; it is extremely salient in Didelphis and divides the lateral side of the bone into two well defined fossat. The superior fossa mainly receives the origin of the gluteus medius (gluteal fossa) and the lower that of the iliacus (iliac fossa). In Mayulestes, the two fossae are approxi-
mately of the same size as in living didelphids, while in Pucalelphys the gluteal fossa is clcarly larger than the iliac fossa. In dorsal view, the wing of the ilium is thin as in Pucadelphys and conspicuously everted as in Cladosictis, Prothy-lacynus and Pucadelphys, contraty to Didelphis, Marmosa and Caluromys where the bone is almost straight. On the medial side of the ilium the articulation with the sacrum is very little marked but it seems that only one sactal vertebra was articulating with the bone as in Cladosittis and Thylatinus rather than rwo as in Didelphis and Caluromys. As in Pucadelphys and Cladosictis, the wing of the ilium is more evered than in the living didelphids. The imporrant eversion of the ilium provides a larger insertion area for the erector spinae.
On the lateral side of the body of the ilium, just anterior to the acetabulum, the tuberosity for the rectus femoris is small. It is, however, slightly larger than those of Caluromys and Didelphis but differs from those of Prothylacynus and Cladosictis which are latge and very salient. In Tbylacinus, the tuberosity is nor as developed as in these genera bur ir is larger than in Mayulestes. It is also relatively large in Puadelplys. On the ventral side of the pelvis of Mayulestes, at a point which corresponds to the junction of the ilium and the pubis, is a small ruberosity, the iliopubic eminence where is atrached the tendon of the psoas minor, a flexor of the lumbar part of the vertebral column. The iliopubic eminence of Mayulestes is weaker than in Cladosictis and Prothylacynus but more developed than in Didelphis and Caluromys where it is sometimes totally absent.

Fig. 32 - Mayulestes ferox, holotype (MHNC 1249). Left femur A, anterior; B, posterior, C, lateral; D, medial; E, proximal. Right femur F, anterior; G, posterior; H, distal views. Scale bar A-D, F, G, $1 \mathrm{~cm} ; \mathrm{E}, \mathrm{H}, 5 \mathrm{~mm}$.

The acetabulum is shallower and more open than in Cladosictis, Prothylacynus and Didelphis. It similar to that of Caluromys and indicates a greater mobility at the articulation. The lunate surface is the atricular surface with the femur; it is composed of a ventral and a dorsal lobe separated by the acetabular fossa. In Mayulestes the dorsal lobe of the lunate surface is smaller and narrower than the ventral one. The same condition exists in Caluromys, Didelphis and Pucadelphys while in Cladosictis and Prothylacynus both lobes are approximately the same size and in Thylacinus the dorsal lobe is louger and wider than the ventral one. The anterior border of the acetabulum is salient laterally and thickened; the dorsal border, in dorsal view, is well excavated
(i.e. concave laterally). The condition of Mayulestes is similar to that of Caluromys, Phalanger, Petaurus and Pucadelphys, but differs from those of Cladosictis, Prothylacynus, Metachirus and Didelphis.
The ishium is longer than in the Didelphidae and similar in size to that of Cladosictis. On the dorsal edge of the bone, posterior to the acetabulum, is a small tubercle, the ischiatic spine. In Mayulestes it is slightly larger tban in Caluromys, Didelphis and Pucradelphys, bur slightly less developed than in Cladosictis, Prothylacynus and Thylacinus. Posterior to the ischiatic spinc is the smaller sciatic notch which, consequently, is less pronounced in Mayulestes than in the Santa Cruz borhyaenoids. In its posterior portion, the

ischium of Mayulestes is longer and narrower than in Caluromys and Didelphis but resembles in these respects the condition observed in Cladosictis. The posterodorsal angle of the ischium is the ischiatic zuberosity where originate the biceps femoris and the semitendinosus, both extensors of the thigh. The ischiatic cuberosity is weak in Maywlestes and Caluromys. It is stronger in Didelphis and Cladosictis and much stronger in Thylacinus.
The posterodorsal angle of the ischium is nor modified in a true ischiatic ruberosity and is nor slightly recurved ventrolaterally as it is observed in didelphids. In Cladostatis and Prothylacynus they are more developed than in Mayulestes and, in Thylacimus, ir is stronger than in the former genera. The ischiatic tuberosity of didelphids is reduced but a lictle stronger in Didelphis, Metachirus and Monodelphis than in the other

Fig. 33. - Mayutestes ferox, holotype (MHNC 1249). Left femur: A, anterior; B, postenor. Abbreviations: fc, fovea capitis; ft , femoral Irochlea; $\mathrm{gt}_{\text {r }}$ greater Irochanter: \boldsymbol{h}. head: if, intercondylar fossa; Ic, lateral condyle;' le, lateral epicondyle: It. lesser trochanter; Itc, lateral trochlear crest; mc, medial condyle; me, medial epicondyle; mic, medial trochlear crest; \mathbf{n}, neck; tf , trochanteric fossa; tt, third trochanter. Scale bar: 1 cm .
living genera of the family. In Caluromys and Phadelphys it is extremely flat as in Mayulestes but more salient.
In ventrolateral view, the dorsal borders of the ilium and the ischium of Mayulestes make an angle of approximately 155°. In didelphids, phalangerids, Cladosictis, Prothylacymus and Thylacimus the dorsal borders of the ilium and the ischium are roughly parallel and aligned.
Femur. (Figs 32, 33) Neithet of the femora of the holorype of Mayulestes is complete. The left femur is the best preserved but lacks a small portion of the neck, the apex of the lesser trochanter, part of the diaphysis and the medial distal condyle; furthermore, the distal part of the shaft shows a slight post-mortem deformation. The right fentur lacks the apex of the greater trochanrer, the distal thind of the diaphysis and a small posterior portion of the medial distal condyle. Both bones, however, allow an accurate rcoonstruction of the femur of Mayzdestes.
The femur of Mayulestes is relatively short when compared to those of Cladosictis and Prothylacymus but resembles that of Borlyaena which is more massive. It is shorter than that of Caluromys but its proportions are close to that of Didelphis. In lateral view, the proximal epiphysis is cleatly bent anteriorly as in Cladosictis, Pucadelplys. (Fig. 34) and Caluromys, contrary to Borhyatud where it is almost straight. In Didelphis and Thylacimus, the curvature is presene but much less pronounced than in Mayulestes. That feature is also very clear in proximal view. The proximal condyle (or head) is slightly elongated in proximomedial view (i.e. compressed anteroposteriorly) and the articular surface extends on the neck laterally (there is a small variation berween both femora since the condyle of the right femur is slightly more compressed anteroposteriarly), This condtion is relatively simila to that of Caluromys, Didelphis and the other borhyaenoids. However, the proximal condyle of Mayulestes is less globular than in these forms and more resembles in this respect that of Thylacinus. The fovea capiṭis for the attachment of the ligament of the head of the femur is located on the posteromedial side of the head, close to the border of the articular surface. It differs from what is observed in Didelphis,

Caluromys and Claclosictis, where is is somewhar more central on the condyle; it is closer to the position observed in Borbyama and Tbylacinus. The fovea capiris is larger than in didelphids and other borhyatnoids, suggesting a much stronger attachment of the ligament in Mayulestes. The neck is short as in Cahoromps and differs from that of Cladosictis and, to a lesser extent, Didelphis, which are longer. In this respect, it somehow resembles those of Borhyuena and Protbylacymus: 'The head and the neck are oriented less proximally and the distal side of the neck is more concave than in Cladesictis and Didelphis but they resemble the condition observed in Caluromys. The greater trochanter is for the insertion of the threc glutei, two of which have their origin on the lateral side of the ilfum. The gluteus medins is inserted on the posteroproximal angle, and the gluteus ptofundus on the anteroproximal angle. The greater trochanter of Mayulestes is higher than the condyle, a condition also found so a lesser extent in Bohbyaenat and Thylacinus. In Cladusivis, Prothylacynus, Didelphis and Caluromys the greater trochanter is always lower than the condyle. In lateral view, the greater trochanter has an angular apex with salient insertion areas for the glutei medius and profundus. On the anterior side of the greater trochanter is an clongated shallow fossa, for the vasti lateralis and intermedius, which runs distally along approximately one quarter of the length of the bores. That forsa is absent in Cladosictis, Protbylacyuns, Thylawinus. Caluromys and Ditelphis, in Borhyana the origin of the vasti lateralis and intermedius is a slightly depressed area located on the anteriot side of the greater trochanter. The lesser trachanter is a large medial triangular blade on the apex of which is inserted the tendon of the iliopsoas (iliacus + psoas major). It is clearly more developed than in Prothylacynus, Cltedosictis, Borbyaema and Thylacinus. It resembles those of Didelphis and Caluromys, aldoough larger and thinner. Distal to the greater trochanter, on the lateral side of the bone, is the third trochanter. In fact, in Mayulestes, it is more a lateral expansion of the bone than a trochanter, which is in continuity with the anterolateral crest of the greater trochanter. The third trochanter teceives the insertion of the
glureus superficialis, an important abducror and inverter of the hip. In Mayulestes, the area of the third trochanter is markedly expanded laterally while it is straight in Cladosictis, Prothylacynus,

Fig. 34. - Pucadelphys andinus (YPFB Pal 6106). Right femur: A, anterior; B, posterior; C, lateral; D, medial; E, proximal; F, distal views Scale bar. 5 mm .

Fig. 35. - Mayulestes ferox, holotype (MHNC 1249). Right tibia: A, anterior; B, posterior; C, lateral; D, medial; E, proximal; F, distal views. Scale bar: A-D, $1 \mathrm{~cm} ; E, F, 5 \mathrm{~mm}$

Borhyaena and Thylacinus. In Didelphis, posteromedial to the insertion of the gluteus superficialis and laterodistal to the apex of the lesser trochanter is a small tubercle for the insettion of the quadratus femoris, an extensor of the hip and an evettor or the thigh. No such tuberde exists on the holorype of Mayulestes, while it is strongly developed in Cladosictis, Prothylacynus, Borhyaera and Thylacimus. In Cladostctis it is especially salient and connected to the lesser trochanter proximomedially through an oblique ridge. On the posterior side of the greater trochanter, the trochanteric fossa scceives the obruratorii internus and externus and the gemelli muscles. The fossa is deep but not very elongated proximodistally. Its distal extremity is slightly more proximal than the level of the apex of the lesser trochantet. This condition differs from those of Cladosictis, Prothylacynus, Borhyatena and Thylacinus, where the fossa is much longer and reaches the distal extremity of the lesser trochanter blade distally. The trochanteric fossa of Mayulestes is much note reduced than in these genera and sescmbles those of Didelphis and Caluromys. In lateral view of the bone the shaft is straight as in didelphids and the Santa Cruz borhyaenoids. It differs from Thylacinus whose femur is bent posteriorly, a cursotial feature.
The anterior face of the distal extremity of the femur bears a large trochlea (the patella was probably absent in Mayulestes) For the passage of the tendons of the vasti and rectus femoris muscles. It is deep when compared to didelphids and has an important proximal extension on the anterior side of the shaft; the extension of the trochlea is more developed on the lateral side than on the medial. The crochlea is shifted laterally, approaching the condition of Eozostrodan (Jenkins \& Parrington 1976). The lateral and medial borders of the trochlea form sharp crests, the lateral
one being more elevated than the medial one. The trochlea of Mayulestes is more developed than in the other borhyaenoids: it is wider, has more pronounced relief and expands more distally on the shaft, If is, however, closer to that of Clusdosictis than to those of Borhyaena and Prothylacynus, although ir is wider. It differs from that of Didelpbis which has a less pronounced relief, and is notably different from that of Caluromys, which is distoproximally very short and very flat. The distal extremity of the shaft, proximal to the rochlea, bears a shallow sulcus for the passage of the tendon of the vasti and rectus femoris. A similar condition is observed in ThyLatinus. In the orher borhyaenoids and in Didelphis there is no groove but a flat sutface which also corresponds to the passage of the tendon. That region of the femur in Caluromys is slightly convex.
In distal view, the lateral condyle is conspicuously larget and wider than the medial. This condition is close to that of Didelphis, Caluromys and Phalanger whete the medial condyle is narrower than the lateral (although more pronounced in these genera), but differs from chat observed in Cladosictis, Borbyaena and Prothylacynus, where the lateral condyle is narrower than or subequal to the medial one. Since the medial condyle of Mayulestes is not completely preserved, it is not possible to observe the relative anteroposterior extension of both condyles. However, it is probable that the medial condyle was at least as long as the lateral one or even slightly longer. In lateral view it is noteworthy that the lateral condyte is much less globular than in Cladosictis, Prothylacynus, Didelphis and Caluromys. The articular surface of the lateral femoral condyle of Mayulestes is not recurved posteroproximally as in these genera and the condyle is protruding posteriorly, a condition that must have reduced the
amplitude of the movement posteriorly (the flexion of the knee). There is a large and deep postcondylar fossa [called popliteal surface by Evans \& Christensen (1979) in the dogl, probably a consequence of the little recurved posterior border of the condyles. In anterior or postcrior view, the medial condyle ins slightly lower (i.e. more distal) than the lateral one as in Prothylacynus, Cladosictis, Borlyatna, Thylacinus, Didelphis and Caluromys. On the latcral side of the lateral condyle is the fossa for the origin of the popliteus muscle (which logically should be called poplitens fossa). It is small and shallow as in Didelphis and Calurnmys bur differs from Cladosictis, Prothylacynus, Borlyyena and Thylaciuns where it is well marked. The epicondyles are not significantly different from those of the genera consideted here. In distal view, the distal epiphysis of the fomur is less flattened anteroposteriorly than in Didelphis, Caluromys, Monodelphis and Plifilander but approaches the condition of Metuchirus. It is however clearly wider thas long and approaches the condition observed in the Santa Ctuz bothyaenoids; it is proportionally slighty longet anteroposteriotly than in Prothylatymes and Borrbyena but slightly shorter than in Cladosictis.
Patella. No patella has been found associated to the holotype and it is suggested that it was not ossified in Maynlestes as it generally occurs in didelphids.
Tibia. (1igs 35, 36) The bone has the typical didelphid sigmoid shape, a condition that is found in all the representatives of the family. In Mayulestes it is more pronounced than in Didelphis and Caluromys; less marked than in Chironectes but similar to what is observed in Marmosa and Lutreolima. In Prothylacynus and Thylacimus the ribia is straight and, in Cladosictis, its distal extremity is slightly bent medially. In Maynlestes, in posterior vicw the proximal third of the shaft is concave laterally and the ewo distal thirds are convex. The sane condition is found in Didelphis, Marmosa alad Caluromys; in Chironectis, Metachirus and Letreolina the inflexion point is losated at the middle of the shaft. The tibia of Thylacinus is also slightly concavoconvex with the inflexion point at the middle of the shaft. In lateral and distal view, the

Fis. 36. - Mayulestes ferox, holotype (MHNC 1249). Fight libia: A, anterior; B, postenop views. Abbrevations: aica, anlerior intercondyloid area; 11 , tibular facet; ic, intercondyloid eminence; Ic, lateral condyle: mc, medial condyle: mm, medial malleolus: tb, fibial tuberosity; ic, fibial crest. Scate bar; 1 cm .
shaft of the ubia of Mayulestes is regularly bent posteriorly as in didelphids, contrary to the condition of the Santa Cruz borbyaenoids.
In proximal view, he proximal epiphysis is shore anteroposteriorly as in Caluromys and Didelphis (eo a lesser extent in this genus) and differs frọm the condition observed in Prothylacynus and Cladosictis, whose proximal epiphysis of the tibia is markedly triangular. The tibial tuberosity is small and very lietle salient anteriorly, Ir is smaller than in Caluromys and Didelphiss and much smaller than in Prothylacynus, Cladosictis and 7 Thylacinus, whare its development is responsible for the triangular shape of the proximat epiphysis. In lateral wiew the tibial tuberosiry is truncated and forms a regular slope on the anteroproximal angle of the tibia. This condition is found in all didelphids and borhyaenoid bur difFers from that observed in Thyladinus where the tuberosity is very salicnt and forms a right angle with the shaft. Between the tuberosity and the

Fig. 37. - Pucadelphys andmus (YPFB Pal 6106). Right libia: A, anterior: B, poslerior; C laleral; D, medial; E, proximal; F, distal views. Scale har: $A-D, 5 \mathrm{~mm} ; E, F, 2.5 \mathrm{~mm}$.
condyles is a surface of rugose bone called the anterior intercondyloid area. This area is very short anteroposteriorly as in Caluromys and Didelphis and differ from the very long area observed in Prothylacy-nus, Cladosictis and Thylacinus. The lateral cibial condyle is subtriangular, almost flat; the medial condyle is reniform, excayated and is a little more distal than the lateral. The two condyles are anteroposteriorly shorter than in Caluromys, Didelphis

Thylacines and probably Cladosictis (the two specimens I could observe duting this study had a poorly preserved proximal extremity). In Prothylacynus the condyles are even shorter than in Mayyulcstes and the medial condyle is subcircular in shape. The fibular facer of Mayulesto is elongated transversely and has a posterolateral orientation as in all didelphids and borhyaenoids observed during this study. The imtercondyloid eminence is well-developed and tounded. It is larger than in frothylacymus but smaller than in the didelphids and Thylacinus. The posterior intercondyloid area is almost absent and corresponds to the posterion slope of the intercondyloid eminence. 'There is a small posterior intercondyloid area in Prathylucynus, Cladosictis and Thylacinus.
On the anterior edge of the proximal extrenity of the shaft is an unatural ovoid cavity. It is difficuls to derermine if this structure is pre-mortem (i.e. pahological or traumatological) or postmortem (i.e. raphonomical), although the smoothness. of its edges would indicate some bone growth and would favour the pathologicaltraumatological hypothesis.
The tibial crest is smoothly convex and does not form a rounded keel as in Caluromys, Didelphis, Prothylacyuns and Cladasictis. The keel is much more salient and much narrower in Thylacimus. The lateral tibial fossa is small but well marked. It is smaller than in Prothylacynus and Thylucinus but deeper than and nor as flat as in Didelphis and Caluramys. The medial tibial fossa is well-developed as in Caluromys and differs from the condition observed in Prothylacynus, Cludosictis, Thylacinus and Didelphis, where it is more a lat area than a Fossa. On the posterior side of the proximal extremiry of the shaft is a deep fussa located distal to the popliteal notch. As it stands in Mayulestes, it is probable that it has been emphasised by a post-mortem deformation. Howcver, it scems to have been relatively decper than in the didelphids, a condition similar to that observed in Prothylacynus and Cladtosictis. 'The distal two thirds of the shaft are transversely compressed as in Prothyldannus, Cladosictis and Thylacinus. This condition is also Found in Caluromys and Ditelelphis, where it is more pronounced. On the posterolateral side of
the shaft is a marked crest munning distally from the posterior ribial fossa toward the distal extremity until the distal third of the bone. This crest is probably for the interosseous membrane which unites the tibia and fibula as in all didelphids. This structute is stronger than in Prothylacynus but it is much weaker than in Cladosictis where ir almost teaches the distal extremity of the shaft.
The distal extremity bears the articular sutface for the astragalus which is divided into a medial and a lateral facer. In Mayulestes both facers form a marked angle a little larger than 90°. It resembles the condicion of Prothylacynus and Cladosictis, where the angle is close to 90° (or slightly smaller) and differs from the condition observed in the living didelphids where the angle is much more open. The malleolus is large and high and occupies the entire length of the anteromedial side of the distal epiphysis, contrary to the didelphid condirion where the malleolus is anteroposteriorly shorter. The condition of this feature in Cladnsictis is intermediate between those of Mayulestes and didelphids. The malleolus is flattened transversely and its major axis has a posteromedial-anterolateral orientation and forms an angle of approximately 48° with the transverse axis of the tibial condyles. In the Santa Crux borhyaenoids and in Thylacinus, the plane of the malleolus is at 90° with the transverse axis of the femorotibial articulation (the functional interpretation and significance of this feature are discussed below). The medial facet of the astragalotibial articulation is large as in the other borhyaenoids, unlike in didelphids, where it is short, anteropusteriorly and proximodistally. It is strongly convex and faces posterolaterally. The lateral facet of the articulation is reniform, slightly concave and oriented stightly obliquely in relation to the boundary (in lateral view) between the epiphysis and the shaft (Fig. 35C). This condition is intermediate berween that of Prothylacynus and Thylacinus, where it is parallel, and that of didelphids, where the facet always makes an angle of 30 to 45° with the limit between the epiphysis and the shaft. As a consequence, the lateral astragalotibial facet of didelphids is helical and serews around the malleolus. The astragaloribial articulation of Cladosictis is also slightly oblique as in Mayulestes
but its astragalotibial articulation is not helical as in the didelphids. The lateral facet is short anteroposteriorly as in Prothylacymus and Thylacinus and ditfers from those of Cladosictis and Didelphis which are longer. In Puradelphys the condition of the distal articulation of the cibia is similar to that of Maydicstes (Fig. 37). The malleolus forms an angle of approximately 69° with the axis of the femorotitial articulation and the latetal and medial facets of the astragalotibial articulation are approximately at right angle.
The articular facet for the fibula is located on the lareral edge of the distal epiphysis. In Mayulestes, it is shorter proximodistally than in Prothylacynus and Cladosictis and occupies the whole posterolareral edge of the distal epiphysis. Jt difFers from that of Thylacinus where it is sestricted ro the anterolateral angle of the epiphysis. As in Prathylatynus and Cladosistis, the lareral edge of the discal epiphysis is more salient than in Thylacinus and in didelphids (where it is almost in continuity with the lateral side of the shaft).
Fibula. (Fig. 38) Only the distal extremity of the right fibula is known. The distal epiphysis has a subtriangular shape in distal view. Contrary to what is observed in didelphids, it is very salient medially and it is probable that the distal extremity of the shafts of the bones were broadly separated. The articular surface for the astragalus is concavoconvex; it is not possible to observe whether it was arriculating also with the calca-

Fig. 38. - Mayulestes ferox, holotype (MHNC 1249). Right fibula: A, anterior; B, posterior; C, distal views. Scale bar: A, B, $1 \mathrm{~cm} ; C, 5 \mathrm{~mm}$.
neum or not In the didelphids, there is no fibulocalcanear arriculation, except in Didelphis, Metachirus and Chironectes (Szalay 1994: 196, 340). On the lateral side of the epiphysis is a well marked groove for the passage of the rendon of the extensor digitorum lateralis and peroneus brevis and longus muscles. A similar condition is found in the living didelphids, In Prothylacynus and Cladosictis, the passage of the tendon is a flat area and there is no groove.
Tarsus. (Figs 39, 10) The calcaneum is the only bone of the tarsus that is known in Mayulestes. The right calcaneum is complete; only the distal extremity of the left one is preserved. Comparisons of that bone will be made with those of Sipalocyon (YPM PU 15154), Cladosictis (YPM

PU 15046) and with six large (for the fauna) calcanea from the early late Palacocenc of Itaboraí (Braxil) which are most likely referable to borhyaenoids although not necessarily to the same raxon. Because of their size, the four smaller specimens (DGM 1. $775-\mathrm{M}, 176-\mathrm{M}, 178-\mathrm{M}$, 179-M) belong to the IMG (Itaboraí Metatherian Group) XI of Szalay (1994) and could fit the genus Patene while the two larger ones (DGM 1. 180-M, 184-M) belong to the IMG XIII of Stalay (1994) and could fit Nemolestes. In the following description, for practical reasons they will be referred to the "Itaborai borhyaenoid calcanea" and no reference is made to specific genera.
The ruber calcamei of Maywlestes is relatively lon-

Fig. 39. - Mayulestes ferox, holotype (MHNC 1249). Right calcaneum: A, anterior; B, posterior; C, lateral; D, medial; E, distal views. Scale bar: 5 mm .
ger and more slender than in Cladosictis, Sipalocyon and the Itaboraian calcanca. The ectal facet (the lateral articular facet for the astragalus) is small, short proximodistally and very narrow. Lateral to the ectal Facet there was either no calcancolibular (CaFi) facer or a very narrow strip-like facct. A calcancofibular facet is present in Cladosictis and Sipalocyon and in all the Itaborai borhyaenoid calcanea mentioned above. In one specimen figured by Szalay (1994, fig. 6.27 A-C), the calcaneofibular facer is very similar to that which could exist in Mayulestes in its length, narrowness and otientation, while in the other specimens the facet is generally wider and/or obliquely oriented. In the Itaborai borhyaenvid calcanea, the articular contact with the fibula is generally smaller than in Cladosictis and Sipalocyon (Szalay 1994, fig. 6.27. 6.31), although it is larger (as large as the ectal facer) in DGM 1.160-M, a specimen which "falls within the range expected for Patene" (Szalay 1994: 177). On the lateral side of the protuberance which bears the ectal and fibular facets is a well marked insertion area for the calcancofibular ligament. Medially, the dorsal side of the sustentaculum rali bears the sustentacular facet (the medial articulation for the astragaluss). It is smatler and more gracile than in Cladosictis and Sipalocyon and, as in these genera, irs articular facet occupies the entire length of its dorsal side and reaches distally the dorsolateral edge of the cuboid facet, contrary to the condition observed in didelphids. The sustentacular facet is slightly
obligue relatively to the axis of the uber calcanei as observed in the ltaboral calcanea and Sipnlacyou, contrary to the condition of Chedosietis, where is is parallel to the cuber. The orientation of the plane of the sustentacular facet is mainly medial with a small dorsal component. In Sipalocyon its orienration is almost totally dorsal and in didelphids it is intermediare between Mayulestes and Sipalocyon. The peroneal pröcess of ilse calcaneum is expanded distolaterally and bears a deep groove for the passage of the peroncus longus. In Mavulestes the peroneal process is larger and the groove is decper than in Cladosictis and Sipalocyon; in these respects, they are similar to those of the Itaborai calcanea. Furthermore, the lateral wall of the sulcus is very thick and longer than the medial in Mayulestes as in the ltaboras calcanea, contrary to Clatensictis and Sipalocyon. The large and laterally cxparded peroncal process of Mayulestes leaves a large space for the passage of the tendon of the peroneus brevis on its anterior face, and for the abductor digiti quinti on its posterior face (Godinot \& Prasad 1994; Prasad ke Codinot 1994). The posterior face of the calcaneum of Mayulestes possess a small ridge which runs distally from the posteromedial edge of the tuber calcanei and reaches the small distal plantar cubercle on the posterior border of the calcaneocuboid arriculation. The posterior side of the peroneal process is wide and deeply concave and that of the sustentaculum tali is relatively flat. In Sipalocyon and Cludasictis, the ridge is much more developed than in

Fig. 40. - Mayulestes ferox, holotype (MHNC 1249). Right calcaneum: A, anterior; B, posteriof; C, lateral; D, medial, E, distal views. Abbreviations: at, anterior plantar fubercle; ct, cuboid lacet; cff, calcaneofibular facel; dpt, distal plantar lubercle; ef, ectal tacer; icfl, insertion for calcaneofibular ligament: pp. peroneal process; pr, posterior ridge; spl, sulcus for the passage of the peroneus longus; st, sustentaculum tali; stf, sustentacular facet; tc, tuber calcanei. Scale bar: 5 mm .

Mayulestes, the posterior side of the sustentaculum is convex and the posterior side of the peroneal process is narrow and only slighily concave. When compared to rhar of Mayulestes, the posterior side of the calcaneum of Sipalocyon and Cladositis is millated posteriorly, probably in order to strengthen the bone. In the luaborai calcanea, the condition is intermediate berween that of Moyulestes and those of Cladosictis and Sipalocyon since they have a slighty thicker posterior ridge. As a consequence of the morphology of the posterior side of the calcaneum, in distal view, the arricular facet for the cuboid has a straight border in Mayulestes, while it is convex posteriorly in Cladosintis and Sipalocyon. The condition of the Jtaboraí calcanca resembles more that of Mayulestes than that of the Santacruzian genera. As in the Itaboraí calcanea, the cuboid facer is deeper in Moyulestes than in Sipalocyon and Cladosictis.
The calcaneurn of Mayulestes differs from that of Didelphis which is more specialised. In Didelphis the tuber calcane is more robust and shorr, the ectal facet is very narrow, the sustentacular facet does not reach the cuboid ficer distally, and the sustentaculum tali is norched medially. The susrentacular and ecral facers are very close to one another in Didelphis, while they are well separated in Mayutestes, the peroneal process is small, does not reacls the bateral border of the cuboid facet distally, and the groove for the peroneal muscle has lost its medial wall. Furthermore, the calcaneum of Mayulestes differs from that of most didelphids a secondarily acquired CaFi facet is present in Didelphis (although small in this genus), Metchirus, and Cffironectes (Szalay, 1994)| which have loss the calcaneofibular (CaFi) facet, a derived condition also found in peradectids (Szalay 1994). Contrary to the statement by Marshall \& Sigogneau-Russell (1995). the calcaneum of Pucdelelphys has a clear calcaneofibular facer distincily observable on the further prepared left tarsus of YPFB Pal 6106 (Fig. 41).
One of the most characteristic modifications of the calcaneum of didelphids is the presence, posteriorly, of a deep notel on the posterior border of the cuboid facet for the atticulation of a large proximal styloid process of the cuboid, around
which the calcaneum probably has some rotation ability (CaCup facer of Szalay 1994). Borh cuboid (Cacud and CaCup) facers are separared by a well marked semicircular ridge. This feature, which is a didelphid synapomorphy (Szalay 5994), is absent in Maulestes, Contrary ro the statement by Marshall \& Sigogneatu-Russell (1995: 148), the calcaneum of Puculelplys does not show, even incipiently, any trace of the very typical proximal indentation of the cuboid facet, as it is observed in the living didelphids and in nvo fossil didelphids from the Palaeocene of

Fig. 41. - Pucadelphys andinus (YPFB Pal 6106). Righl calcaneum: A, anterior; B, posterior; C, lateral; D, medial; E, distal; F, proximal views. Scale bar: 2.5 mm .

Itaboraí (Brazil) (Szalay 1994, fig. 6.23). In this respect, the calcaneum of Pucadelphys is similar to that of Mayulestes and to most North American Late Cretaceous and Tertiary marsupial calcanea figured by Szalay (1994: Chapter 6). The calcancum of Pucudelphys does not possess a CaCup facct. In fact, the concavity of the plantar aspect of the cuboid facet (what Marshall \& Sigogncau-Russell questionably regard as an incipient development of the didelphid condicion) is mare pronounced in Mayulestes than in Pucadclphys (YPFB Pal 6105 and 6106). The specimen YPFB Pal 6110 (Marshall \& Sigogneau-Russell 1995, fig. 50) is that of a juvenile and the postetiot border of the cuboid facer is probably slightly worn (this has been pointed out to me by D. SigogneauRussell). The consequence is that the proximal extension of the cubuid facer of that specimen appears more developed than ir actually was, and more than in the other specimens (YPFB Pal 6105 and 6106). Whatever the orientation of the calcancocuboid facet of Pucadelphys is, it is clear that it is simple (i.e.. it does not have a CaCup facet) and does not present an incipient development of the calcaneocuboid didelphid synapomorphy. Therefore, the calcaneum of Pucadelphys does not have two of the major calcanear synapomorphies found in didelphids (presence of CaCup and loss of CaFi facets).
Metatarsus. (Fig. 42) Two mecapodials are referred to left MiIII and MrIV. However, the determination of the MtIII is uncertain since parr of the proximal extremity is lacking. The relative length and proportions of the MtlII are similar to those of Sipalacyon and Cladosictis. It is clearly shorter than in Prothylacynus, In anterior view, the articular facer for the ectocuneiform is more convex and more bent anteriorly than in Sipalocyon allowing probably better flexion movements of the foot. On the distal extremity, the condyle is lesis globular than in Sipalocyon and there is a deep articular fossa on the anterior side of the bone, proximal to the articular condyle. This latter condition also denotes better articulation and wider movernent of the digits.
The MtIV is relatively shorter than in Sipalocyon and does not present the weak lareral curvature observed in this genus. lts proximal articular

Fig. 42. - Mayulestes ferox, holotype (MHNC 1249). A, Lefi Mill in dorsal view; B. Lef1 MitV in dorsal view. Scale bar: 5 mm .
facet with the cuboid is more inclined anteriorly and laterally than in Cladosictis and would also indicates more agility in the movements of the foot. The distal articulation is similar to that of the Meljl.
MeIII (13 mm) is slightly longer than MeIV $(12.2 \mathrm{~mm})$. They are both slightly longer than ane thitd of the length of the tibia.

DISCUSSION

Cranial characters

Teeth
Incisors. The number of incisors of Mayulestes ($15 / \mathrm{i4}$) is obviously plesiomorphic when compared to that of the other borhyaenoids (I4/i3). Before the discovery of Mayulestes, the reduction of the ineisors number to $14 / 13$ was regarded as diagnostic of the Borhyaenoidea (Marshall \& Kielan-Jaworowska 1992). Among marsupials, an incisor formula of $15 / \mathrm{i4}$, which is always present in didelphids, is regarded as plesiomorphic. However, Winge (1941) has noted that the Il was not occluding with any lower incisor and suggested that the il had been lost in marsupials. Therefore, the first lower incisor is the i2. Hershkovitz (1982: 186) agrees with this interpretation which is supported by strong embryological evidence (Woodward 1893; Berkovitz

FIG. 43. - Dorsomedial view of the dissected anterior region of a mandible of Pucadelphys andinus (YPFB Pal 6473) showing the staggered i3. Scale bar: 2.5 mm .
1978). So far, no marsupials have been found with a complete incisor formula and the plesiomorphic incisor formula for marsupials is that of Mayulestes. 15/i4.
Mayulestes has a staggered i3 (i.e. second lower incisor). Hershkovitz (1982) has shown that the second lower incisor (i3) of most polyprotodont marsupials has a root which is shiffed (staggered) posteriorly and dorsally. Consequently, the anterior alveolar border of the 13 on the dentary is thickened or butressed. According to Hershkovitz, thar feature is present in didelphids, borhyacnoids, scveral dasyurids, Thylacinus, several peramelids and an Early Cretaceous portion of left mandible (FMNH PM583, Theria incertae sedis) interpreted (by Hershkovita) as a metatherian. Contrary to the statement by Marshall \& Muizon (1995: 68), the i3 of Pucadelphys is actually staggered, as shown by specimens YPFB Pal 6473 and 6474 (Fig. 43). The staggered condition could not be observed in Pediomys because of the smate of preservation of the specimens. The staggered i 3 is absent in the Microbiotheriidae and is not observable in other South American families where hyperspecialisation of the muzzle hides that condition (Caenolestidae, Groeberiidae, Argyrolagidae Peramelidae, and Myrmecobidae). Among Lare Cretaceous taxa, the i. 3 is apparently not staggered in Alpbaulon, Kokopellia, Endelphis browni (AMNH 14149) and Didelphodon (USNM 2136); (Cifelli \& Muizon 1997, 1998). The staggered i3 has been regarded as a synapomorphy of marsupials (Hershkovitz 1982), but

Muizon ct al. (1997) tentatively regard this character as a synapomorphy of the southern radiation of marsupials (Sourh America and Australia). The microbiotheriid condition must hence be regarded as a reversal.
The upper incisor row of Mayulestes is deeply arched posteriorly as in didelphids, In the other borhyaenoids, where that part of the skull is known, the upper incisor row is almost straughe and rransverse (in Pharophorks, Sipalocyon. Cladosictis, Borbyatena, Prothyhecymus, Acrocyon). A straight upper incisor row is a derived condition within the Borhyaenoidea and the arched upper incisor row of Mayulestes is a plesiomotphic condition for the superfamily.
Premolars. The fiest upper and lower premolars of Mayulesies are slightly obliquely set in the maxilla and dentary as it is observed to a much greater extent in the Borhyacninac and the Prohorhyaenidae. The Prothylacininac have a p1 strongly oblique in the dentary but P 1 is apparently not oblique. Marshall et al. (1990) have regarded the oblique implantation of pl as a synapomorphy of the Borhyaenidae. However, the presence of this feature in the Probothyacnidac (Paraborhyzena) introduces a contradiction in the cladogram of Marshall et al. (1990, fig. 2), as does the presence of an oblique P1 in the Borhyaeninae and the Probothyaenidae. In fact, node 24 (Borhyaenidae) of Marshall et al. (1990, fig. 2) is relarively weakly supported since the other synapomorphy they use to diagnose the family is "animals of medium to large size". The presence of slightly oblique upper and lower first premolar in

Mayulestes would suggest that this is the plesiomorphic condition within the Borhyaenoidea and that it could represent a synapomorphy of the superfamily. The loss of the obliquity in some raxa would therefore have to be regarded as an apomorphic character srate related to a lengthening of the tooth row (Cladositis, Sipalocyon). However, it is noteworthy that the obliquity of the first lower premolar in the Borhyaenidae and Proborhyaenidae is much more pronounced than in Mayulestes and probably also represents an apomorphic trend related to the acquistion of a very short and stout mostrum.
Molars. The molars of Mayulestes show a slight increase in size from M1 to M3 and from ml to m 4 . In face, the lust lower molar of Maytulester is subequal in height and volume to m 3 and only very slightly longer than m 3 (length $\mathrm{m} 3=3.70$. length $m 4=3.74$). "the character state "trend for molars to increase rapidly from ml to mf and from M1 to M3" has been regarded by Marshall \& Kielan-Jaworowska (1992) as a synapomorphy of the Borhyacnoidea. However, it is noteworthy that an increase in size from ml to m4 and from M1 to M3 is also found in the Stagodontidae and in the Dasyuroidea (Thylatimus. Strooplailus). In the Creotonta the last lower molar is frequently the largest of the tooth row (Hyaenodor, Pterodon, Dissopsalis, Queryutheritm, Cymohymmodon). This is also rue in several felids and byaenids. In fact, the tendency to increase the size of the last lower molar and pentumate upper molar is a highly homoplastic character state related to hypercarnivorous diet. Whatever the function is (shearing, crushing or both), the greatest force is located at the posteriormost end of the tooth row (the closest possible to the cotation axis of the condyle), which is probably relared to the rendency of various groups of mannals to increase the size of the posteriormost lower toorh. Therefore, the phylogeneric value of the character stare "rapid increase in size from ml to $\mathrm{m4}$ and from M1 to M3" is questionable since it is a highly homoplastic feature. Furthermore, a lase lower molar slightly larger than, or subequal in size to, the preceding tooth is also present in the Early Cretaceous eutherian Prokarnalestes, and in some species of Cimolestes. Therefore, it is probable
that the condition of Mayulestes represents the plesiomorphic character stare. The same is probably rrue for Eoclelphis and Pariadens, where the $m 4$ is only very slighty larger than the m3.
The molar norphology of Mayulestes is, very similar to that of Allqokirus from the same locality (Fig. 44). The holotype of Allqokirus is an upper molar referred to an M2 or M3 by Marshall \& Muizon (1988). The proportions of the holotype of Allqokirus ($1 .=3.25 \mathrm{~mm}, \mathrm{~W}=$ $3.8 \mathrm{~mm}, \mathrm{~L} / \mathrm{W}=0.85$) clearly differ from those measured on the M2 $(\mathrm{L}=3.05 \mathrm{~W}=4.34$, $\mathrm{L} / \mathrm{W}=0.7)$ and $\mathrm{M} 3(\mathrm{~L}=2.8, \mathrm{~W}=4.64 . \mathrm{L} / \mathrm{W}=$ 0.6) of the holorype of Mayulestes. Furthermore, whe M2-M3 of Moyulestes differ from the holotype of Allqokirus in having a much larger stylar cusp D, a low crest descending from the stylar cusp D toward the lingual extremity of the meracrista, a metacrista which does not strongly overhang the base of the crown (as in is observed in Alliokimus), a straight posterior edge of the tooth

Fig. 44. - Occlusal views of M3 of: A, Mayulestes; B, Allqokirus. Occlusal views of m3 of: C. Mayulestes; D. Allqokirus. Lingual views of m 3 of: \mathbf{E}, Mayulestes; \mathbf{F}, Allqokirus. Scale bar = 2 mm .
(whereas it forms an angle of approximately 150° in Allyokirus), a deeper ectoflexus and a more robust and longer protocone. One m3 has been referred to the holotype of Allgokirus by Marshall \& Muizon (1988). The m3 of Mayulestes differs from that of Allqokirus in being narrower and mote slender. The lower molars of Mayulestes resemble those of Allookirus in most of their seructure and both are peculiar in having a reduced entoconid and a talonid basin opened anteromedially. The level of morphotogical similarity existing berween Miryulestes and Allqokirus is similar to that existing between Cladosictis and Sipalocyon, two different genera found associated in the same localities from the Colluehuapian and Santacruzian hods of Patagonia.
The borhyaenoid molar morphology shows several evolutionary trends which represent a functional complex related to postvallum-prevallid shear, characteristic of hypercarnivorous adaptation (Muizon \& Lange-Badré 1997). On the lower molars, the metaconid reduces and disappears in most genera; the paraconid is enlarged and crest-like, and the paractistid tends to rotate counter-clockwise, being almost paralled to the tooth row in some borhyaenids. some probothyaenids and in thylacosmilids: the talonid rends to reduce and almost disappears in borhyaenids, proborhyaenids and thylacusmilids. On the upper molars, the paracone and the protocone are always reduced and almóst disappear in some burhyaenids, proborhyaenids and thylacosmilids; the stylar shelf and stylar cusps B and D are gencrally very reduced and often totally disappear; the posmetacrista is greatly enlarged and tends to be aligned with the metacone, parallel to the tooth row. These features are highly adaprive and can be obscrved (some or all) in five other groups of mammals: Deltatheroida, Stagodontidae, Dasyntoidea (Thylacimus and Sarcophilus), Creodonta and Carnivora (Muizon 1994; Muizon \& Lange-Badre 1997). Thercfore the functional complex based on postvallum-prevallid shear is a highly homoplasric synapomorphy with a low phylogenetic value and it should not be retained as a key synapomorphy of the borhyaenoids.
In Mayulestes, the molar morphology is relatively unspecialised for a borhyaenoid but some of the
features related to postrallum-prevallid shear are already incipienrly developed: the paracone is smaller in volume and height than the metacone, the postmetacrista is enlarged, the meraconid is subequal in height to, but smaller in volume than, the paraconid, and the paraconid is slightly blade-like. The same features are also present in Allqokirus. The molar morphologies of Mayulestes and Allqukirus are very similar to that of Patene. However, the former genera differ from the latter in the very small size of their entoconid and in rhe lingual opening of the ralonid basin, while in Patene the entoconid is subequal in height and volume to the hypoconulid and the ralonid basin is not opened lingually. The small size of the entoconid of Allogokirus has been regarded as a plesiomorphy within the borlyaenoids by Marshall \& Kielan-laworowska (1992). A small entoconid is also found in the Delatheroida and probably in Acyialodm; this cusp is absent in Kielantherium and Hyppoylos, two Early Cretaceous tribosphenidans (respectively, Dashzeveg \& Kielan-Jaworowska 1984 and Sigogncat-Russell 1992). Marshall \& KielanJaworovska may be correct since Allqokirus and Mayulestes are the oldest known borhysenoids and since, in younger genera of the superfamily, the entoconid, when present, is always well-developed. However, various lineages of borhyaenoids show a tendency to reduction of the talonid, which is ofien achieved by the reduction of the entoconid and the lingual opening of the talonid hasin [Plesiofelis schlosseri (MLP 11-114), Notogale mitis (MNHN SAL 97). Anatherium berrente (FMNH 1.3521), Chasicostylus castroi (MLl' 57-XI-2), an isolated ml (MNHN SAL 272) from the Deseadan beds of Salla (Bolivia), probably reterable to a small species of Pharsophorus]. Therefore, since this feature has appeared several times independently in several groups of borhyaenoids, the reduction of the entoconid of Mayulestes and Allookirus may very well have also occurred in the Mayalestidae (Allqokirus and Mayzlestes) and would be, therefore, a synapomotphy of the family. This hypothesis is rentatively retained here. It is noteworthy that the earliest known marsupial genera (Kokopellia, from the Albjar-Cenomanian of Utah, Pariadens, from the Cenomanian of

Utah) have a well-developed entoconid. A similar condirion is present in Asiatherium from the Late Creraceous of Mongolia.
The apomorphy of the reduced entoconid of Allqokirus has been previously mentioned by Szalay (1994: 321, 328). If this assumprion is correct, Mayulestes and Allgokirus cannot be regarded as probable monrphological ancestors for Patetic (as it was suggested by Marshall \& Muizon 1988 and Muizon 1992) but could represent a morphological dental ancestor for a lower molat from the late Palaeocene of Itaborai referred by Marshall (1978) to cf. Nemolestes sp. This tooth (a posterior molar, m.3 or m4) has a high protoconid, a large crestlike paraconid and a small metaconid cuspule at the posterolingual base of the protoconid. The talonid is very reduced, the talonid basin is open lingually and the entoconid is either extremely reduced or rotally absent. The genus Nemolestes has been regarded by Marshall (1978) and by Marshall et al. (1990) as the oldest known represenrative of rhe Borhyacnidae. If these authors are correct, rhen Allqokivus and Mayulestes would not be ancestral the Hathlyacinidae as previously stated by Marshall \& Muizon (1988) and Muizon (1992) (for Allqokirus only) but could tepresent the sis-ter-group of the Borhyaenidae. However, this hypothesis still has to be tested wirh the discovery of cranial remains of Nemolestes.
The stylar cusps and srylar shelf of the upper molars of Mayulestis and Allqokirus are well-developed for borhyaenoids. The only orher borhyaenoid genus whose upper molars have well-developed stylar shelf and stylar cusps is Patene. Mayulestes and Patche resemble each orher in having a stylar shelf larger than in the other borhyaenoids, conspicuous stylar cusps A and B and no cusp in a stylas C posirion. However, on the M3 of the holorype of Patene simpsoni and on an isolated M3 from Itaboraí (DGM uncaralogued specimen), a series of small cuspules are observed in a srylar cusp C position. Mayulestes differs from Patene in having a larger stylar shelf, a larger stylar cusp B and a conspicuous scylar cusp D (absent in Patene). A stylar cusp B is also present in Procladosictis from the Mustersan of Patagonia. The scylar cusps and stylar shelf of Mayulestes are extremely similar to
those of the Stagodontidae (Eodelphis and Didelphodon) which also have a large stylar shelf with well-developed stylar cusps B and D and which lack a cusp in a stylar cusp C position. However, a series of cuspules in stylar cusp C position, similar to that of Patene, is also observed in some specimens of Eodelphis and Didelphodon (Fox 1981). As in Mayulestes, the ecroflexus of Eodelphis and Didelphoton are deep. A well-developed stylar cusp C is present on the teeth referred by Eaton (1993) to Pariadens kirklandi from the Cenomanian of Utah. This species has been included within the Family Stagodontidae by Cifelli \& Earon (1987), but Eaton (1993) cautiously added a question mark to the familial atrribution initially suggesred. Fox \& Naylor (1995) consider that the upper molass referred to that species by Eaton (1993) certainly do not match the stagodontid morphology since they possess a well-developed stylar cusp C. The Deltathetoida lack stylar cusp C, but a small stylar cusp D) is present in Sulestes (Kielan-Jaworowska \& Nessov 1990) and on the molars of the Gurlin Tsav skull. The absence of a conspicuous cusp in a stylar cusp C position is regarded as a plesiomotphic character stare withim metarherians (Fox 1975 ; Fox \& Naylor 1986; Fox 1987; Marshall et al. 1990; Eaton 1993). Furthetmore, Cifelli (1993a, b) and Szalay (1994) have clearly expressed that the scylar cusp C may have appeared and disappeared several times in marsupials evolution. Therefore, Mrayulestes, which lacks a stylar cusp C, probably retains the plesiomorphic condition.
In fact, the upper molar pattern of Mayulestes approaches rhe stem marsupial morphology, according to Marshall et al. (1990), The following features are regarded by these authors as represenring the stem marsupial upper molar morphology; (1) molars transversely wide and anreroposreriorly short; (2) ectoflexus deep, centrally located along the labial margin; (3) stylar shelf wide; (4) stylar cusps B and D prominenr, with $B>D_{i} \cdot(5)$ stylar cusp C not developed; (6) stylar cusp A distinct, yet much simaller than D; (7) paracone and metacone very large, sabequal in size, set side by side and positioned approximately midway along transverse axis of the tooth; (8) centrocrista linear; (9) conules distinct
but not enlarged; (10) prorocone tall (spirelike) and not expanded, so the angle between the protocristae being acute (60°): and (11) both anterior and posrerior cingula present (shelf between the anterior hase of stylar cusp A and rbe paracone and berween the posterior base of stylar cusp E and the metacone respectively). This morphology is based on that of "Alphadon" creber (specimens without stylar cusp C). Mayulestes shows most of the features cited by Marshall et al. (1990), except a posterior cingulum; Mayulestes also diverges from the plesiomorphic marsupial upper molar patern in having a paracone slightly smaller than the metacone and an ectoflexus located slightly anteriotly (the two features are probably related). The condition of the Stagodontidac is similar to that of Mayulestes and Allqokirus. In his cladogram of early rribosphenic mammals, Cifelli (1993 a, b) has retained the same feature (presence of a posterior cingulum) which he expressed differently: "postprotocrista of upper molars extends labially past base of netacone (double-rank postvallum/prevallid shearing)". This author regards that feature as a synapomorphy of a monophyleric group made of: (1) the Eutheria; (2) Kukupellia, Zygocuspis and Falpetrus; and (3) the Marsupialia [The occurrence of this characrer has recently been observed in Kukopellia (Cifelli \& Muizon 1997)]. However, a postprotocrista extending labially past the metacone is absent in many metatherians: detathernidans, borhyamoids, stagodontids, didelphoids, most microbiotheres, and dasyuroids. Therefore, the distribution of this feature would indicate that it appearad several times in therian evolution. However, since is is incipiently present in the Palacocene microbiothere (Khasia), and absent in the Miocene (Microbiotherium) and Recent (Dromiciops) genera, it is also possible that it has been reversed (perhaps independently) in some lineages (Muizon et al. 1997). The molar morphology of Mayulestes is, hence, probably derived in the lack of a posterocingulum.
To conclude, the dentition of Mayulestes shows many plesiomorphic features not only for a borhyaenoid but also for a metatherian. The number of incisors of Mayulestes ($15 / \mathrm{i} 4$) is the primitive condition for marsupials and the cha-
racter state "number of incisors reduced to $14 / 13$ " is derived for the other borhyaenoids. The lack of a posterocingulum is probably a reversal within marsupials which also occurs in stagodontids, bothyaenoids, didelphoids, microbiotheres, and dasyurids. The incipiently developed features related to prevallid/postvallum shear observed in Mayulestes have been shown above to be of low phylogeneric value since they appeared independently in at least six groups of mammals and probably several times within some of these groups (Muizon \& Lange-Badré 1997). The same is rrue for the increase in size from ml to m 4 and M1 to M3, a feature probably related to carnivorous diet. Consequently, the dentition of Mavulestes does not exhibit undoubted borhyaenoid synapomorphies since all of them are either symplesiomorphies or highly homoplastic features. The only probable derived feature of the molars of Mayulestes and Allgokivus is the great reduction of the entoconid, regarded here as a synapomorphy of the Mayulestidae. This feature certainly appears several times in borhyaenoids evolurion and is therefore of low phylogeneric value. However, since the only elements of Mayzlestes and Allqokirus that can be compared are M2 or 3 and m 2 or 3 , and since it is the only derived feature shared by the molars of the two genera, it is tentatively retained in spite of its weakness as a synapomorphy of the family, It is clear that cranial remains of Allqokirus are much needed to clarify this poinc.
The key synapomorphies of the Borhyaenoidea cannot be established on the basis of dental features but must be searched for in cranial morphology.

Bonty skull

Mayulestes, a weasel-sized animal, is the smallest known borhyaenoid. Although, at first sight, the rostrum seems to be shorter than in the other borhyaenoids, the measurements in Table 1 indi-cate that it is even slightly longer. The rostrum of the Hathliacyridae (Sipalocyon and Cladosicti.s) appears to be slightly longer mainly because of the greater length of the jugal tooth row and the greater narrowness of the palate Mayulestes clearly shows a shorter cheek tooth row and a wider palate between P3 and the ante-

TABLE 1. - Propontions of the length of the rostrum to ine total langh ol the skuti in bormyaenonds. Le, total length of the skull form the tip of lle premaxillae lo the posterior exiremity of the occip(a) condyles (in YPMPU $150 \mathbf{4} 6$ and 1570 the occipital condyles are missing and the length of the skull is measured from the posterior border of ine lambooid crest, The error infroduced is regarded here as muthor;: Lr, fength of the rostrum trom the anterior bordar of the orbit; Letr, lengit of the cheek footh row from artierior border of P1 to posterior border of M4, WP3, width of the palate belween posierior roots of P3s: WM4. widit of the palate between the M4s; Winf, width of the rostum at the level of the antarior foramina of ine infraorbital canal, In Alaywestos WM4. WP3 and Winf are approximate because of the dorsoventral crushing of the skull. All measurements afe in millimeters.

	Lc	Lr	Lctr	WP3	WM4	Winf	Lr/Lc	Lctr/Lc	WP3/Le WM4/Ir Wint/Lc	
Mayulestes (MHNC P 1249)	54	20	17	11.5 e	11.5 e	14.8 e	0.37	0.31	0.21	0.21
0.274										
Borhyaena 1 (YPM PU 15 701)	230	76	78.3	37	75	58	0.33	0.34	0.16	0.32
Borhyaena 2 (YPM PU 15 120)	195	67.2	71.3	30	63.5	42	0.33	0.35	0.14	0.36
ProthylacynUs (MACN 5931)	171	52.8	-	28	48	43.5	0.31	-	0.16	0.28
Cladosiclis (YPM PU 15170)	158	57.5	59	15 e	32	-	0.36	0.33	0.09	0.205
Cladosictis (YPM PU 15046)	142	52	52	15.5	30	-	0.36	0.36	0.11	0.21
Sipalocyon (AMNH 9254)	112 e	39 e	38.5	14.5	21.5	17	0.348	0.34	0.13	0.196

rior opening of the infraorbital canal. Furthermore, in the Santa Cinu: borhyaenoids, the greater concavity of the lateral side of the maxilla, in the region of the anterior foramen of the infraorbital canal. contributes to the narrowness of the rostrum and to its apparent length. In Mayzelesters the rostrum is not constricted at its base. Therefore, the rostrum of Mayulestes is relatively long (for a borhyaenoid) and robust but the palate is wider and shorter than in the Santa Cruz borhyaenoids.
The general morphology of the skull is close to that of the Borhyaenidae, from which it differs, however, by its much wider interorbital bridge. The absence of a supraorbital process is probably a plesiomorphic character since this structure is absent in several Late Cretaceous eutherians from Mongolia (Asiugries, Batanlestes, Kermalestes), and in the deltatheroidan skull from Gurlin Tsav (Kielan-Jaworowska \& Nessov. 1990; Szalay \& Trofimov 1996). It is absent in sevcral didclphids, in caenolestoids, in several dasyurids and in peramelids. Among the other borhyaenoids, a distinct supraorbital process is also lacking in Borbyaena although, in this genus, the frontal bridge is grearly widened hetween the orbirs.
As in all the other borhyacnoids and in all generalised fossil and living marsupials, Maytueste: retains the plesiomorphic condition of a large orbit confluent with the temporal fossa.
The nasals of Mayulestes are long and posteriorly flared. They have a broad contact with the lacri-
mals, a plesiomorphic condition found in cynodonts, tritylodonuids, Vincelestes (Bonaparte \& Rougier 1987), Morganucodon (Kermack et al. 1981). Sinuconodon (Crompton \& Luo 1993), Haldanodon (Lillegraven \& Krusat 1991), Delatheridiuns (Kielan-Jaworowska 1975a), and Asiatherium ('lrofinov \& Szalay 1994; Szalay \& Trofimor 1996). Among marsupials, a nasal-lacrimal contact is present in all the trorhyaenoids (except Tbylacanmilus) and in Wynyardia. The derived character state is a maxilla-frontal contact which separates nasal and lacrimal. The condition of Mayulestes is a plesiomorphy within mammals. 'The nasolacrimal contact in Wynytrdia (Gregory 1920) and the lack of contact in Thylacosmilus are regarded as a reversals. In the latter, this reversial is due to the hyperdevelopment of the maxillae related to the development of sabre-like camines.
The lacrimal of Mayulestes has a large facial wing, a plesiomorphic condition found in cynodonts. Iathanadon (Lillegraven \& Krusat 1991). Morganacodon (Kermack at al. 1981). Sinoconodon (Crompton \& lut 1993), Vincelestes (Bonaparte \& Rougier 1987), Deltatheyidium (Kielan-Jaworowska 1975a) and Picciadelphys (Marshall \& Muizon 1995). Furthermore, the external lacrimal foramen is doubled and opens within the orbit. This condition is plesiomorphic and it is present in cynodonts, Morgamucodon, Vincelestos, Deltatheridiam and in the other borhyaenoids. This condition is present in most didelphids, except in Didelphis where the
external lacrimal foramina opens dorsolaterally just anterior to the anterior extremity of the orbit. In Thylacinus the external lacrimal foramen is doubled and one foramen opens inside the orbit while the other opens clearly outside of the orbit anteroventrolaterally. The condition of Mayulestes is plesiomorphic within mammals.
Mayulestes has no palatal vacuities as is observed in the other borhyaenoids. The presence of palatal vacuities shows an important variation within mammals. Thcy are absent in cynodonts, Haldanodon (Lillcgraven \& Krusar 1991), morganucodontids (Kcrmack a at. 1981), Sinoconudon (Crompton \& Luo 1993), some multitulerculates (Kamptobaatar, Chubanhbatarar, Lambdopsallis, Tateniolatis), Vincelestes (Bonaparte \& Rougier 1987), Deltatheridium (KielanJaworowska 1975a) and in many marsupials [Pucadelplys, Caluromys, Sparassacynus, Darycercus, Datsyurvides, some specics of Smintlopsis and Anterlhinus, Myrmecobius, Dartylopsila, Petaurus and Dactylonax (Marshall 1979b)]. They are generally atbsent in eutherians (except leporid lagomorphs, some rodents, macroscelids, erinaceids, and Carpolestes). Palatal vacuities are also present in some multituberculates (Nemegtbaatar, Sloanboutar, Bulyumbaatar, Ptilodus), in the Deltathetoida from Gutlin Tsar (KielanJaworowska \& Nessov 1990; Szalay \& Trofimov 1996), in Asiatherium (Trofimov \&\& Szalay 1994; Szalay \& Trofimov 1996) and in most living and fossil marsupials (Marshall 1979b; Reig ot al. 1987). Fox \& Naylor (1995) recently observed the presence of palatal vacuities in stagodontids (Eodelphis and Didelphoston) and in Alphadon.
The palatal vacuities are generally regarded as plesiomorphic for marsupials (Tyndale-Biscoe 1973; Fox \& Naylor 1995). However, Marshall (1979b), Archer (1982) and Marshall \& Muizon (1995) stated that, since the maxillae and palatine bone in the developing skull of marsupials were generally not fenestrated [Parker (1886) noted that the fenestration occurs later in ontogeny by bone resorption], a solid palate was probably the plesiornorphic state for mammals. The high degrec of variability in the presence or absence of palatal vacuities in mammals, as wcll as embryological observations, suggests that these structures probably appeared several times
independenty in and wilhin each group, which therefore significantly reduces their phylogenetic valuc. Mayulestes and Pucadelplyss retain the plesiomorphic condition for mamalals.
The pterygoid and postpalatine region of the skull of Maydelestes is significantly different from that of the other borhyaenoids. The choanal fossa of Moynlestes is relatively wide and short anteroposteriorly. Its walls are formed essentially by the pterygoids, they are high and chin. 'The pterygrids have a large, look-like hamular process which overkang (in vencral view) the basisphenoid and the alisphenoid. In the Dcseadan and Santacruzian borhyaenoids (Mayulestes is the only pre-Desseadan borhyaenoid whose complete skull is known), the choanal fossa is long and narrow anteroposteriorly. Its walls are low, thick and formed by rwo bony layers, on the one hand the prerygoid medially, on the other hand the palatine antermaterally and the alisphenoid posterolaterally. The lateral side of the wall shows a thick anteropostctior buturess.. The bottom of the choanal fossa is roofed by the prerygoid. The hamular processes of the prerygoids arc either lost or very reduccd. As a conscquence of that morphology, the plane of the palate passes smoorhly to the basioccipital without the strong difference of levcl ohserved in Mayulestes because of the presence of very satient hamular processes. Therian pterygoids are fragilc bony plates seldom preserved in fossils and unknown in Palacogene or Crctaccous marsupials (except Mayulestes). In the living didelphids, the pterygoids are very fragile small bony blades (often lost duting preparation) which still retain a hamular process, although much smaller than in Mayulestes. Well-developed prerygoid laminae and hamular processes ate presenc in Barunlestes (Kielan-Jaworowska \& Trofimuv 1980) and Asioryctes (Kielan-Jaworowska 1981). The condition observed in these Late Creraccous eutherians suggests that a prerygoid with welldeveloped ventral lamina and hamular process probably represents the plesiomorphic condition for therians. Therefore, Mayulestes retains the plesiornorphic condition: it is more plesiomorphic than the other Borhyaenoidea and the Didelphidae. As stated by Muizon (1994), the loss of the hamular process of the pterygoid is a
synapomorphy of the orher borhyaenoids. However, it is noteworthy that a morphology similat to that of the other borhyaenoids is present in Thylatinus although, in this genus, the pterygoid plate is higher.
The jugal of Mayulestes, as in fossil and living marsupials, reaches the glenoid fossa posteriorly and forms a preglenoid process which receives part of the articular surface. This condition is a plesiomorphy for therians (Marshall \&s Muizon 1995) which is also found in Vincelestes, the deltatheroidan skull from Gurlin Tsav, and some eutherians. In spitc of its plesionorphic nature this feature was retained by Marshall \& Kielan-Jaworowska (1992) as a synapomorphy of the Metatheria (including Dettatheroida).
The alisphenoid of Mayulestes has a large suture with the parietal. This character state is present in the Late Cretaceous eutherians Asiuryctes and Kennalestes and in the eupantothere, Vincelestes. Among marsupials, it is present in fossil and living didelphids (including Pucadelphys), in some borhyaenoids [Mayulestes, Smllacyon, Sipaloryon (Archet 1976), Notogale (MNHN SAL 271), Paraborbyaena (MNHN SAL 51)], in myrmecobiids and most dasyutids (Archer 1976). It is absent in some borbyaenoids (Borhyaena, Protylacynus), thylacinids, peramelids, vombatids, in some phascolarctids and some dasyurids (Atcher 1976). Mayulestes therefore presents what is regarded here as the plesiomorphic state for the Theria,
The alisphenoid of Mayulestes makes a small concribution to the anteromedial angle of the glenoid fossa (entoglenoid process of the alisphenoid of Clemens (1966:73)]. A much larger concribucion is also present in all didelphids, in caenolestoids, in microbiotheres, in peramelids. in dasyuroids (smaller), in some perameloids and in several phascolaretoids (smaller). The alisphenoid does not participate in the glenoid fossa in the orher borhyaenoids, in stagodontids, in Hondadelphys and in most phalangeriforms. In Vincelestes, the alisphenoid does not contact the glenoid fossa of the squamosal and the feature is therefore irrelevant in this genus. However, it is noteworthy that, in Vincelestes, a similar participation to the anteromedial angle of the glenoid fossa is achieved by the anterior lamina of the
periotic. It is interesting tw note here that the anterior lamina of the periotic has been regarded by Presley \& Steel (1976) and Presley (1981) as homologous with the blade of the alisphenoid. A participation of the alisphenoid to the anteromedial angle of the glenoid fossa is interpreted here as a plesiomorphic character state within marsupials, which disappears independently in several lineages. Mayulestes retains the plesiomorphic condition within the borhyaenoids and marsupials. In Recent didelphoids, the alisphenoid is perforated by the foramen rotundum, the large formmen ovale, the entocarotid canal, and, when present, the transverse canal.
There is no transverse canal in Mayulestes. This structure is also absent in some borhyaenoids (Sipalocyon, Borhyaena and Prothylacynus). However, Marshall (1977b: 639) noted in Lycopsis a "ciny foramen [...] which appears to represent a rudimentary transverse canal" and a probable transverse canal is present in Notogale (MNHN SAL 271) from Salla-Luribay (Bolivia) and in Cladesictis (YPM PU 15705). There is no transverse canal in morganucodontids, multituberculates, Deltacheroida, in the Late Cretaceous eutherians from Mongolia, in some didelphids (Caluromys), in some dasyurids (some species of Planigale). A rransverse canal is present in most didelphids, most dasyurids, myrmecobiids; peramelids and thylacynids. On the basis of the important variation in its size and morphology, Marshall \& Muizon (1995: 71) have stated (contra Archer 1976) that the lack of transverse canal was likely to be a plesiomorphy for marsupials and that this structure probably appeared several times during marsupial evolution. The absence of transyerse canal in Mayulestes would support this statement.
The term foramen ovale requires some discussion. In this work it is used to designate the foramen which transmits the mandibular branch of the trigeminal nerve without consideration of the bones surrounding it (senst KielanJaworowska et th. 1986). In Vincelestes (Early Cretaceous supantothere), the foramen ovale pierces the anterior lamina of the periotic, in Pucudelphys and Mayulestes (early Palacocene marsupials) it is limited by the alisphenoid anteriorly and by the periotic posteriorly, in

Asioryctes and Kennalestes (1.are Cretaceous eutherians) it only pierces the alisphenoid. The designation foramen pseudovalc has a variable definition according to aurhors (MacIntyre 1967; Archer 1976). Mclutyre (1967) called foramen pseudovale in eutherians the foramen resulting in the fusion of the teue foramen ovale (totally enclosed by the alisphenoid and the foramen lacerum medium). For Archer (1976, 1982), the foramen pseudovale in marsupials is the foramen called foramen ovale in this study, i.e. limited by the alisphencid anteriorly and by the perioric posteriorly and through which the V3 nerve exits the skull (Archer 1976, 1982). In fact, the plesiomorph condition for marsupials is very probably that of Pucadelphys and Mayukestes (which is also present in recently discovered skulls of Andinodelphys from the early Palacocenc of Tiupampa). The derived condition for marsupials (found, for example, in Didelphis) is the formation of a shorr canal (the canal of the foramen ovale) in the alisphenoid which totally encloses the V3. The posterodorsal opening of the canal is the primitive true foramen ovale found in Pacudelphys and Mayulestes. It is clearly observable on a cerebral view of the basicranium of Didelphis. Since it represents the plesiomorph condition I suggest not to give it the name pseudovale. The anteroventral opening of the canal is a secondary formation which, in fact, would berter deserve the name pseudovale than the posterodorsal opening. In order to avoid confusion with McIntyres foramen pseudovale (fusion of foramen ovale and foramen lacerum medium), the name of secondary foramen ovale is more appropriate for the anteroventral opening of the canal of the foramen ovale (Wroe 1997),
The consequence of the formation of at canal of the foramen ovale is a superficial separation of the foramen ovale from the foramen lacerum medium. This condition is probably independent of the development of a tympanic process of the alisphenoid since Potbylaymus has a canal of the foramen ovale and a secondary foramen ovale although this genus did nor develop a rympanic process of the alispheroid. The lack of the tympanic process of the alisphenoid and a foramen ovale which opens between the alisphenoid and the periotic are regarded here as plesiomor-
phic conditions in Mayulestes and Pucadelphys. This interpreration is reinforced by the fact that Hopson 8\& Rougicr (1993: 289) stased that the didelphid condition of the cmbryological development of the alisphenoid and is relationships with the three branches of the trigeminal nerve represents the plesiomorphic condition for marsupials and, by exrension, for all living thetians. In Mayulestes the foramen lacenm medium is possibly confluent wish the foramen ovale, a condition observed in Burkyaena and the dasyurids (Matshall 1977a), which, therefore, would possess a true foramen pseudovale (sensu Mclotyre 1967). This condition is absent in the Didelphidae and in Pucadelpbys, and if actually present in Mayulestes is regarded here as apomorphic.
Mayulestes has no rympanic process of the alisphenoid. The absence of this structure in some bothyacnoids (Borbyatena, Prorbylacynus, Lycopsis) and in Pucadelphys has been regarded as a derived condirion (Marshall \& Kielan-Jaworowska 1992). However, Muizon (1994) Ias suggested that the absence of alisphenoid bulla in the oldest known skulls of borhyaenoid (Mayulestes) and didelphoid (Incadelphys and Andinodelploys) seems to indicate that the condition in the three genera is plesiomorphic, thus indicating that a tympanic process of the alisphenoid evolved several cimes independently during marsupial history. There is no tympanic process of the alisphenoid in Borbyacma, Prothylarynus, Iyropsis, Sallacyor (possibly) Parabortyacna and Thylacosmilus. Its occurrence in the genera Cladosictis, Sipalocyon and Notogale (MNHN SAL 271) is regarded here as a synapomorphy of the Harhliacynidae (Muizon 1994).
Mayndestes does nor have a rostral tympanic process [senser Wible (1990) = tympanic wing of the perrosal part of the perioric sensu Archer (1976a)]. However, the small rubercle anteroventral to the fenestra cochleae is probably homologous to the rostral tympanic process. A condition similar to that of Mayulestes is observed in Sipalncyon and Prathylacynus (nor in Cladosictis). Wible (1990: 199) observed in Borbyaena a "ridge tescmbling that of perrosal Type A" (a Late Cretaccous petrosal from Bug Crcck Anthills, Montana). In an undescribed basicranium (MNHN SAL 271) from the late

Oligocene of \$alla Luribay (Bolivia), referred to Notogate, a clear ridge is prescnt on the medial side of the promontorium. In Pavaborlyaena, the periotic bears a strong ventrally projecting process but, because of the important modifications of the auditory region of this genus (probathly of the family), it is not certain that it is homologous to the rostral tympanic process of other marsupials. P'ucadelphys, an early Palaeocene didelphoid, has a smooth promontorium while all the other members of the superfamily have a rostral tympanic process. A rostral tympanic process is present in monotremes, mutitulerculates, most marsupials and in some eutherians. The homotogies of that structure are not simple, since, as mentioned by Wible (1990: 195): processes on the promontorium result from several different ontogenies in Recent mammals. This author regards the lack of tympanic process as a plesiomorphy and concludes that "rostral tympanic processes of the perrosal lave cvolved independently a number of times within these manmalian taxa" (Wible 1990: 199). Therefore. Wible's assertions are corroborated by the morphologics of Mayulestes and Pucadelphys (which have no true rostral tympanic process) and by the ofservation of an undoubted rostral tympranic process in Notugale (MNHN SAL 271), which demonstrates that this structure appeared at least twice independendy in marsupials. This is not surprising, since the presence of a tostral cympanic process is probably at least partially related to the presence of a tympanic process of the alisphenoid and/or of an alisphenoid hyporympanic sinus and, as stated above, the alisphemoid process is a structure that is likely to have evolved independently sevcral times within marsupials.
The epitympanic recess and the alisphenoid hypotympanic sinus are structures which require special comments. The epirympanic recess is the "extension of the middle ear caviry which lies dorsal to the tympanic membrane and contains the mallear-incudal articulation" (Wible 1990: 188; sce also Van der Klaauw 1931: 73; Archer 1976: 226). 'The posterior extremity of the cpitympanic recess is the fossa incudis or fossa crus breve incudis, a deep and narrow pit where the ligament of the crus breve of the incus attaches. In all marsupials, except Pucadelphys and

Andinodelphys, anterior to the epirympanic recess is a bony sinus excavated in the alisphenoid and floored by the tympanic process of the alisphenoid (absent in several borhyaenoids). It is the alisphenoid lypotympanic sinus. In the didelphoids (which are commonly rcearded as bearing the basic plesiomorphic patern for living marsupials), the critympanic recess and the alisphenoid hyporympanic sinus are separated by the petrosal crest. The posterior slope of the ecrest is excavated by the epitympanic recess and the anterior slope by the posserior part of the alisphenoid hyporympanic sinus. The roof of the sinus is formed by the alisphenoid. The posterodorsal border of the roof abuts againsis the antcrolateral horder of the periotic at the base of the anterior slope of the petrosal crest. The result is that the posterior part of the roof of the sinus is formed by the periotic. The cavity of the periotic of Didelphis virginidna, named epitympanic recess by Wible (1990 : fig. 4A) is in lact the posterior extremity of the alisphenoid hypotympanic sinus (see above). The same is probably true for the periorics illustrated in his fise 2F,5B and D. The epitympanic recess in located posterior to the petrosal crest which is clearly observable in his fige $4 \Lambda, 5 A$ and C.
The alisphenoid hypotympanic sinus of Mayulestes is made of three componenrs: the petrosal, the alisphenoid, and the squamosal (Fig. 45 and see description above). The participation of the squamosal to the sinus has been nored by Archer (1976) in three other borhyaenoids (Sipulocyon, Prothylacymus and Borbydena). I have also observed it in these three genera as well as in Cladositats (Muizon 1994: 210, contra Archel 1976: 292), in Sallacyon, in Notogate (MNHN SAL 271) and in Paraborlynerua. The pottion of the squamosal involved partially (Mayulestes) or torally (other borhyaenoids) in the formation of the sinus is what has been named by Muizon (1994) the medial process of the squamosal (Fig. 45). A participation of the squamosal to the construction of the alisphenoid hypotympanic sinus is apparently alsent from all the orher marsupials. Pucadelphys andinaus, a didclphoid from the carly Palaeocene, also has a medial process of the squamosal but, in this species, there is no alisphenoid sinus (Fig. 46). A

Fig. 45 . - Auditory region of: A, Mayulestes, B, Sallacyon; C, Cladosictis (from Muizon 1994, modified). Abbreviations: aca, anterior crest of the alisphenoid mypotympanic sinus; AL, alisphenoid; ap, alisphenoid portion of the alisphenoid hypotympanic sinus; are, articutar fidges of the squamasal for articulation of the ectotympanic; diwio. dorsal walf of the foramen ovale: ef, entocarotid forament epa, enloglenoid process of the allisphenoid; er, epitympanic recess; fc, fenestra cochleae; fo, foramen ovale; fli, fossa incudis; gl, glenoid tossa; It, lateral trough: mp. mastoid process; inps. Inedial process of line squamosal; pap. paroccipital process, pgi, postglenoid foramen; po, promontorium; pp, petrosal ponton of the alisphenoid hypolympanic sinus; pic, petrosal crest: sica, sulcus for the internal carotid artery; sjv, sulcus for the intemal jugular vein! $\mathbf{s p}$, squamosal portion of the alisphenoid hypotympanic sinus; $\mathbf{S Q}$, squamosal; tpa, tympanic process of the alishenoid. Dutted ine on figure 45C indicate the extension of the medial process of the squamosal filddan by the tympanic process of the alisphancid. Not to suate.
similar condition is present in Andinodelphys (Muizon et al. 1997). In Mayulestes, a generalised borhyaenoid, the participation of the alisphenoid to the sinus is small while the periotic and the squamosal portions are much larget (Fig. 45). In younger borhyacnoids (Sallacyon, Notogale, Sipalocyon and Cladosictis), the enlargement of the sinus is mainly due to the increase in size of the alisphenoid participation. In the borhyaenoids which do not have a tympanic process of the alisphenoid, the alisphenoid sinus is opened ventrally and develops dorsally and anteriorly within the lateral wall of the skull. It may be small (Prothylacynus), mediun-sized (Sallacyon, Borbyaena) or very large (Paraborbyaena). Prothylacynus, Sipalocyon, Cladosictis and Paraborbyaena have a canal of the foramen ovale and a seconday foramen ovale, torally surrounded by the alisphenoid, contrary to the condition of Mayulestes. In Borbjaena, the condition is similar ro that of Mayulestes since the foramen ovale is probably confluent with the foramen lacerum medium, therefore partially bordered by the periotic. In fact, it is possible to derive most of the borhyaenoid alisphenoid morphologies from a Mayulestes morphotype, which probably represents the plesiomorphic condition. In

Sallacyon, the sinus is deeper than in Mayulestes but the organisarion of its components (alisphenoid, squamosal, and periotic) is basically similar to that in Mayulestes; the alisphenoid hyporympanic sinus is excavated anterodorsally in the medial process of the squamosal, posteriorly in the periotic and medially in the alisphenoid. However, because of the inadequare preservation of the only known specimen, the absence of a tympanic process of the alisphenoid and the condition of the foramen ovale are uncertain. In Borhyatza and Prothylacynus, the alisphenoid sinus develops anterodorsally and "pushes" the medial process of the squamosial within the alisphenoid, the anterior part of the sinus is still excavated in the medial process of the squamosal which is underlain by the alisphenoid; in Borhyaena, the foramen ovale probably has the same pattern as in Mayulestes [the only specimen (YPM PU 15120) available during this study is partially broken in this region of the skull]. In Paraborbyaena, the sinus further develops (anterodorsomedially) as a conical caviry which deeply penetrates the alisphenoid far anterior to the medial process of the squamosal; the latter is rotally internal to the sinus and forms its posterolateral wall internally; the anteroventral parr of
the sinus is excavated in the alisphenoid; the passage of the V3 is rotally enclosed within the alisphenoid and there is a secondary formen ovale. Thylacosmilus also has a large, anterodorsally developed alisphenoid sinus as evidenced by a rubber endocast of the middle ear cavity of FMNH P 14344 (Turnbull \& Segall 1984. fig. 7). In Sipalacyon. Cladosictis and Notogale, the portion of the alisphenoid anterior to the medial process of the squamosal develops ventrally and posteriorly, underlies it and projects posteriorly in a well-developed tympanic process which floors the simus; the ventral and most of the dorsal parts of the sinus are excavated in the alisphenoid; the anterolateral part of the sinus is excavated in the squamosal. The periotic portion of the sinus is small when compared to the alisphenoid and squamosal portions. There scems to be, thereforc, two transfommation patterns to the increase of the alisphenoid sinus in the borhyaenoids: (1) an anterodorsal expansion which excavates the alisphenoid: (2) the posteroventral development of a tympanic process of the alisphenoid. Therefore, strictly speaking, the sinus of Maynlestes and borhyaenoids of the first partern, which is situated above the tympanic membrane, is an alisphenoid epitympanic sinus while that of the borhyaenoids of the second pattern, located mostly below the tympanic membrane, is physically consistent with the term alisphenoid hypotympanic sinus. Furthermore, the term alisphenoid is not very appropriate in the case of the borhyaenoids since the sinus is never excavated exclusively in this bone, in Mayulestes the alisphenoid portion of the sinus is even the smallest of the three. However, as mentioned above, this term is commonly used by authors (Van der Klaauw 1931; Archer 1976; Petter \& Hoffstetter 1983) and it is retained here in order to avoid confusion. Pucadelphys andinus (early Palaeocene), the oldest didelphoid whose skull is known, does not have any auditory sinuses, a condition which has been regarded as plesiomorphic for marsupials (Marshall \& Muizon 1995). An alisphenoid hypotympanic sinus is present in all the other marsupials. Contrary to statements by Marshall \& Muizon (1995), the sinus is not absent in some borhyaenoids; it is only small (or reduced) in Prothylacynus and Lycopsis.

Pucadelphys and Mayulestes (as expressed above) are respectively the most plesiomorphic marsupial and the most plesiomorphic borhyaenoid for this character state.
Comparison of the alisphenoid hypotympanic sinus of Mavulestes to that of other borhyaenoids reveals several evolutionary trends of the superfamily: (1) increase of the size of the alisphenoid hypotympanic sinus; (2) increase of the size of the alisphenoid portion of the sinus; (3) tendency to cover the sinus ventrally either by anterodorsal penetration within the alisphenoid or by posteroventral development of a tympanic process of the alisphenoid; (4) tendency to isolate the foramen ovale from the foramen lacerum medium and to cuclose the course of the mandibular nerve within the alisphenoid.
As noted above, the borhyaenoids, Proadelphys (Fig. 46), and Andimortelphys (Muizon it al. 1997) have a conspicuous medial process of the :quamosal, a medial prolongation of the glenoid fossa of the squanrosal which contacts the periotic or the alisphenoid anterior to the epitympanic recess, which reaches (almosr in Mayulestes) the lateral border of the foramen ovale medially (this feature disappears secondarily when the alisphenoid encloses the foramen ovale), and which parricipates to the formation of the alisphenoid hyporympanic sinus in the former. All borhyaemoids bear such a process (Mayulestes, Notogaler, Sipalocyon, Cladosictis, Borbyaena, Prothylacynus, Lycopsis, Pamborbyaenal. This feature apparently absent in Didelphodon (UCMP 53896; Clemens 1966) and Endelphis (AMNH 14169) (Mathew 1916), I have no indication on the condition in the Deltatheroida from Gurlin Tsav, and the holotype of Asiatherium is too crushed to allow its observation. A medial process of the squamosal is absent in the other marsupials, in Morgantuodon (Kermack et al. 1981), in Simocomodon (Crompton $\mathbb{8}$ Luo 1993), in multiruberculates (Kielan-Jaworowska et al. 1986; Miao 1988, 1993), in Vimelestes (Rougier et al. 1992), and in Asiarytes from the Late Cretaceous of Mongolia (Kiclan-Jaworowska 1981). Thercfore, this feature is probably a synapomorphy within marsupials.
The presence of an alisphenoid hypotympanic

Fig. 46. - Auditory region of Pucadelphys (photo of right side of YPFB Pal 6110) to show the medial process of the squamosal. Scale bar: 2 mm .
sinus partially formed by the squamosal has been regarded as a synapomorphy of the Borhyaenoidea and the presence of a medial process of the squamosal has been regarded as a synapomorphy of Pucadelphys + Andinudelyphys + Borhyaenoidea (Muizon et at. 1997). However, Putcadelphys has been referred to the Didelphidae by Marshall 8 Muizon (1995) on the basis of its dental morphology. If this assignment is correct, then Pucadelpins is the sister-group of the ather didelphids in which the medial process has been lost. But one could also question the value of the dental characters used to refer Itucudelphys to the Didelphidae. In fact, the major features considered by Marshall \& Muizon are the V-shaped cencrocrista and the metacone larger than the paracone. These features have been seriously questioned by Cifelli (1990a: 315; 19906: 328) as characters unique ro didelphids since this author demonstrated that they very probably evolved independently several times among North and Sourh American marsupials (see also Marshall et al. 1990, fig. 4). Furthermore, as noted above, Pucadelphys does not have the major tarsal synapomorphies of didelphids: the
loss of the calcaneofibular (CaFi) articular facet which is clearly present in Pucadelphys and the presence of a proximal calcaneocuboid (CaCup) Facet. In is therefore probable that Pucadelphys andinus is not a didelphid as stated by Marshall \& Muizon (1995) but belongs to a distinct clade (sister-group of the borhyaenoids) and which independently acquired a V-shaped centrocrista (a meracone larger than the paracone is also found in borhyaenoids) and a well-developed stylar cusp C (absent in the borhyaenoidss. Aturibution of Pucadelphys andinis to a new family would explain the presence in this species of some plesiomorphic features, unique among marsupials |lack of auditory sinuses, lack of tympanic process of the alisphenoid (shared with Mayulestes), presence of a small anterior lamina of the perioric] and absent in all didelphids. However, if Pucadelphys is actually a didelphid (or belongs to the didelphid sister-group), it is also possible that the development of an alisphenoid sinus in the didelphids was achieved with exclusion of the medial process of the squamosal which got reduced because of the increase in size of the alisphenoid in that
region of the skull. In the borhyaenoids, the development of the alisphenoid sinus has included the medial process of the squamosal. Therefore, Pucadelphys would represent the plesiomorphic condition for didelphoids. If this interpretation is correct then the didelphoids (including Pucadelphys and Andinodelphys) would represent the sister-group of the borhyaenoids (Muizon et al. 1997).
Therefore, given the fact that none of the non-dental synapomorphies of didelphids are present in Pucadelphys and considering the weakness of the dental synapomorphies (see above) I formally include Prtadelphys in a new suprageneric taxon distinct from the Didelphidaet the family Pucadelphydae new. Andinodelphys is very probably also a Pacadelphydae. However, since the study of its cranial anaromy is still in progress, the diagnose of the new family is restricted here to that of the species Pucadelphys andinus. The P'ucadclphydae are regarded here as Didelphimorphia (sensu Marshall et al, 1990) and probable members of the superfamily Didelphoidea. However, it is noteworthy that much of the early history of marsupials is known by teeth, and it is clear that the discovery of major cranial remains of such taxa as $A l p h a d o n$, Peradectes or Pediomys would probably radically change our poor understanding of early marsupial evolution.
Because of the presence of a medial process of the squamusal, whicli relates Pucudelphys to the borhyaenoids, the latter could pessibly have their origin within unspecialised didelphoids (i.e. a Pucadelphys-like form without dental specialisations) or within their primitive sister-group (Muizon et at. 1997). This short discussion demonstrates again how hazardous it is to construct a phylogeny based on teeth only and how cranial and postcranial remains of early marsupials are needed to provide a safer approach to the origin and early history of the group. The periotic of Pucadelphys, didelphids, caenolestoids and some dasyurids bears a small prootic canal for the transmission of the prootic canal vein which unites the lateral head vein (which passes in the posterior patt of the facial sulcus) and the prootic sinus, a primary tributary of the lateral head vein (which runs in a sulcus on the
lateral side of the perioric and is bordered laterally by the squamosal). The prootic sinus exits the skull through the postglenoid foramen, wid the sphenoparietal emissary vein. The medial opening of the prootic canal is situated in a groove of the Jatetal side of the facial sulcus (a relict of the lateral trough of morganucodontids), posterolateral to the secondary facial foramen. The lateral opening of the prootic canal is in the ventral extremity of the sulcus for the prootic sinus, on the lateral side of the periotic. The prootic canal of marsupials passes dorsal to the petrosal crest and anterodorsal to the epirympanic recess. Among fossil marsupials, a prootic canal is present in Pucadelphys, in Avidinodelphys, in petrosal of types A, B, C and D of Wible (1990). Its presence in Didelphodon cannot be confirmed since the corresponding part of the only known periotic of this taxon is broken (Wible 1990). The lack of a prootic carial in Mayutestes and in the other borlyaenoids is a synapomorphy of the superfamily. However, it is likely that this loss occurred several rimes during marsupial evolution (some dasyuroids, perameloids, notorycteids and diprotodonts do not have a prootic canal), which therefore considerably reduces its phylogenetic value.
The ectotympanic of the holotype and unique specimen of Muyulestes ferox has been lost during fossilisation. Archer (1976a: 293) noted in Cladosictis a unique articulation of the ectorympanic whose "main body is intergrown laterally with the squamosal and ventrally with the tympanic wing of the alisphenoid". As he stared, this condition is unique among marsupicarnivores. I have observed is in Cladosicitis (YPM PU 15170), Parabortyarena (MNHN SAL. 51) and Notogale (MNHN SAL 271), where the ecturympanic was preserved in situ (Fig. 47). I have personally removed the tympanic of YPM PU 15170 (Cladosictis patagonicus) which was still in contact with the squamosal. The arriculation of the ectotympanic with the squamosal is characterized by several interlocking ridges and growes. Su, even if the ecturympanic is lost during fossilisation, it is still possible to know if this pecarliar feature was present or not. 1 have observed ridges and grooves on the posteromedial angle of the glenoid fossa and on the medial side of the

FIG. 47. - Auditory region of Notogale (MNHN SAL 271) to show ihe ectotympanic interlocked with the squamosal. Scale bar: 5 mm .
medial wall of the postglenoid foramen (the location of the ectorympanic-squamosal articulation) in Prothylacymus (YPM PU 15700), Borhyaena (YPM PU 15120), Sipalocyon (AMNH 9254) and Sallacyon (MNHN SAL 92). It is apparently absent in Thylacosmilus. However, considering the hyperspecialisation of the ear region of that genus, it is possible that this feature was lost in this taxon. As mentioned above, the case of Mayulestes is difficult since it seems to be intermediate between that of didelphids and that of the other borhyacnoids. However, the condition of Mayalestes is closer to that observed in didelphids and certainly not as specialised as in the other bothyacnoids. Mayulestes therefore retains a plesiomorphic condition wirhin the Borhyaenoidea and ir is not certain that this feature was even incipicntly developed in this genus.
The periotic of Mayutestes has a large pars masroidea which greatly contributes to the occiput. This is a plesionorphic condition which also exists in several Late Cretaceous and Palacocene marsupials (Eoclelphis, Didelphodon, petrosal type A and B of Wible (1990), Paicadelphys). This feature is also found in didelphids, caenolestoids and most dasyuroids. All the other borhyaenoids have a reduced pars mastoidea, internal to the braincase and wedged between
the squamosal and the exoccipital. Mayulestes retains the tribosphenid plesiomorphic condition. Among the other barhyaenoids, the occiput is formed by the occipital only in Cladosicuis, Sipalocyon and Nologate. A large conaribution of the squamosal to the occiput (in the place of the pars mastoidea) is observed in Borbyaena, Protbylacynus, Puraborhyaena (contra Mnizon 1994) and Tloylacosmilus. In this genus, the squamosal participation to the occiput is smaller than in the other three genera but this is probably related to its very special tympanic bulla (see Muizon 1994 and bclow).
The presence of a small truc mastoid process and the absence of paroccipital process in Mayulestes is a plesiomorphy within mammals (Marshall \& Muizon 1995). In the other borhyacnoids, since the reduced pars mastoidea is internal to the braincase, the (so-called) mastoid process docs not cotitain any element of the pars mastoidea of the periotic but is formed by the adjunction of the paroccipital process of the exaccipital and the postrympanic process of the squamosal. It is medium-sized in Prothylaynus and Paraborhydena. It is relatively large in Borlyaena where it is excavated anteriorly by a paroccipital hyporympanic sinus. It is well-developed and projects anteroventrally in Cladosictis, Sipalocyon and Notogale. The extreme condition is present in

Thylacosmilus where the anterior projection of the postrympanic and paroccipital processes is so hypertrophied that they contact respectively the squamosal and the alisphenoid medially to the postglenoid process and completely floor the tympanic cavity. There is no tympanic process of the alisphenoid in Thylacosmilus.

Conclusions on the skull

The major phylogenetic contribution of the new borhyaenoid is a berter understanding of marsupial and borhyaenoid synapomorphies. Alrhough tempting, I shall not consider here the phylogenetic relationships of the supetfamily as a whole since this study will be undertaken in a work in progress which includes deseriptions of the basicrania of Sallucyon hoffitetteri (MNHN SAL 92) and Notograle (MNHN SAL 271). The new data provided ty these specimens allow the establishment of a phylogeny of the Borhyaenoidea represented by major cranial remains. In the following section I shall consider the problem of the diagnosis of the Bortyaenoidea and the affinitics of Mayulestes.
Definition of the Borhyaenoidea. The borhyannoids haye been diagnosed several times by Marshall (1976, 1977b, 1978, 1979a, 1981). However, features taken into account are often symplesiomorphies and some of them, regarded as derived, are highly homoplastic and therefore their phylogenetic value is reduced (emphasis on prevallid-posrvallum shear, rapid increase in size from M1 in M 3 and from ml to m 4 , incipient rostral tympanic process of the periotic).
Marshall et al. (1990) have included in the taxon Borhyacmoidea the families Stagodontidae and Hondadelphidae. These authors have given another diagnosis of the Borhyanoidea. In this work, the Borhyzenoidea in their traditional sense (i.e. sensu Muizon 1994) is the monophyletic group including the Mayulestidae + Hathlạcynidac + Borhyacnidae + Proborhyaenidae + Thylacosmilidae. Marshall et al. (1990) have diagnosed the monophyletic clade made of Hathliacynidae + Borhyacnidac + Proborhyaenidae + Thylacosmilidae with four synapomorphies: (1) a distinct nasal-lacrimal contact: (2) the loss of subarcuate fossa of the periotic; (3) the reduction of the talonid and protocone;
(4) the loss of epipubic bones. Character 1 is a symplesiomorphy. Character 2 is absent in Mayulestes, Sallacyon, Notogale and Cladostctis as these genera have a well-developed subarcuate fossa (this feature in Mayulestes and Sipalocyon has been observed by CT scamning at the Department of Geology of the University of Texas ar Austin. Results of this scanning are under study by the author, R. Cifelli and T. Rowel. Characrer 3 is absent in Mayulestes and is involved in a highly homoplastic functional complex related to hypercarnivorous diet. Character 4 may be a synapomorplyy of the borhyaenoids. However, it is only probable for Mayulestes. Cladusictis, Prothylacynus and Lycopsis and there is no indication that it was present in the other taxa of the superfumily, It is nevertheless tentarively retained here as a borhyaenoid synapomorphy. Therefore, the diagnosis of the Borhyaenoidea given by Marshall it al. (1990) is regarded here as poorly supported.
Marshall \& Kiclan-Jaworowska (1992: 371) have diagnosed the Borhyaenoidea with two synapomorphics: "incisors reduced to 4/3; trend for molars to increase rapidly in size from m 1 to m4, M1 to M3". However, Maytlestes has five upper and four lower incisors and, as mentioned above, the increase in size of the molars is hardly observable in Mayulestes and is a specialisation related to hypercarnivorous diet found in several other groups of carnivorous mammals. It is noteworthy that the increase in size of the molars is regarded by Marshall et al. (1990) as a synapomorphy of the six following families (their Borhyaenoidea): Stagodonridac. Hondadelphidac, Hathliacynidae, Borhyaenidae, Proborhyaenidae and Thylacosmilidae, while Marshall \& Kielan-Jaworowska (1992) regard this character as a synapomorphy of the Borhyaenoidea, a raxon which, according to these authors, does not include the Stagodontidae. Therefore, the proposed phylogeny of Marshall \& KielanJaworowska (1992) contradicts that of Marshall et al. (1990). The phylogeneric value of the character state "rapid increase in size from M1 to M3 and from ml to $\mathrm{m} 4^{\prime \prime}$ appears to be questionable and its weakness is corroborated by the contradiction pointed out above. Therefore, the two dental characters proposed by Marshall \&

Kielan-Jaworowska (1992) are not acceptable as diagnostic of the Borhyaenoidea.
In fact, the only unique fearure observed in all the skulls of borhyanoids is the contribution of the medial process of the squamosal to the alisphenoid hyporympanic sinus. So far as known, this feature is absent from any other marsupial and is regarded here as the key-character of the Borhyaenoidea. Anothet suggested synapomorphy of the borhyaenoids is the loss of the prootic canal, a structure which transmits the prootic canal vein, which in turn links the sphenoparictal emissary vein to the lateral head vein in didelphids, caenolesroids and some dasyurids. However, this character state also appears in other lineages of marsupials (Wible 1990) and is consequently of lower phylogeneric value than the key-synapomorphy cited above. Furthermore, in didelphids, the fossa for the tower canine, anterion to the upper canine, is bordered by an anterolateral process of the maxilla laterally. In post-Palaeocene borhyaenoids, this process disappears and the fossa for the lower canine is opened laterally. In Mayulestes, the anterolateral process of the maxilla is still present but reduced, announcing therefore the condition observed in younger borhyaenoids. The reduction and loss of the anterolateral process of the maxilla is regarded here as a borhyaenoid synapomorphy. This feature is also present in 7hylacimus but, in this genus, the fossa for the lower canine is not opened laterally (i.e. is completely excavated in the premaxilla), contrary to the condition observed in borhyaenoids. As mentioned above, it is probable that Mayulestes lacked epipubic bones. If this hypothesis is cocrect, the probable lack of epipubic bones in Cladusictis, Prothylatynus and Lycopsis (the only three ather borhyaenoids known by relatively coniplete skeletons) would indicate that the loss of epipubic bone is another probable borhyaenoid syrapomorphy.
Affinities of Mayulestes ferox. The above discussion of some relevant features of the skull of Mayulestes shows that, for nost of them, it retains the plesiomorphic character state for a borhyaenoid or for marsupial. In fact, the family Mayulestidae (Mayulestes and Allqokirus) represents the sister-group of all the other members of the superfamily, which are diagnosed by six syna-
pomorphies: (1) the pars mastoidea of the periotic, internal and not contributing to the occiput; (2) the luss of the contrihution of the alisphenoid to the glenoid forsa (i.e. the loss of the entoglenoid process of the alisphenoid (Clemens 1966); (3) the reduction of the hamular process and laminae of the pterygoid and the formation of two crests which connect, without level difference the posterior border of the palate to the basicranium; (4) the tympanic interlocked with the squamosal: (5) the number of incisors reduced to $4 / 3$; (6) the double-arched posterior edge of the palate. The six plesiomorphic conditions of these character states are present in Moyulestes. They are: (1) the pars mastoidea contributing to the occiput, (2) the presence of an entoglenoid process of the alisphenoid, (3) the hamular processes of the prerygoids well-developed and not in continuity with the basicranium, (4) the rympanic loose, attached to the squamosal by ligaments only, (5) $5 / 4$ incisors, (6) the singlearched posterior edge of the palate. Mayulestes. and Allqokirus (family Mayulestidae) are diagnosed by the reduction of the entoconid and the concomitant lingual opening of the talonid basin. It has been suggested above that, because of their lower molar morphology, the Mayulestidae could represent the sister-group of the Borhyannidae. However, the six cranial synaponorphies of the other horhyaenoids listed above demonstrate that the hypothesis cannot be accepted so far. Nevertheless, the diagnosis of the Mayulestidae and their relationships with the other borhyaenoids have to he confirmed by the discovery of cranial remains of Allgokirus and Nemolester. Matyulestes is certaimly not a Harhliacynidae as stated by Marshall et di. (1997).

Postcrantal characters

Atlas
The intercentrum of the atlas of the holotype of Mayulestes is not fused to the neural arch. The sype specinsen of Mayulestes feror is a young adult since the epiphyses of limb bones are not completely fused and the teeth ate only slightly worn. A similar condition is observed in Borhyena tuberata (YPM-PU 15120) where the intercentrum is not fused to the neural arch and which clearly shows incompletely ossified limb
bones. However, in Prothylacymus patagonicus (YPM-PU 15700) and in Cladosictis patagonica (YPM-PU 15702), the intercentrum of the atlas is totally fused to the dorsal arch while the limb bones are incompletely ossified. In most living didelphids the incercentrum is completely fused to the dorsal arch, conerary to what is observed in Pucadelphys. The condition in Mayalestes is plesiomorphic when compared to that of Prothylacynus, Cladosictis and resembles that of Pucadelphys and Bortyatna.
The absence of fully enclosed intervertebral foramina is a primitive condition in Mayulester, Borlyaena, Ptucadelphys, Marmosa, Monodelphis and Perameles; its presence in Prohhylacynus, Cladosictis and Sipalocyon is a darived character state. The absence of a transverse formen is primitive in Mayulestes, Pucadelphys, Didelphis, Monodelphis, Metathirus and Asioryctes, while its presence is a derived character state in the Santa Cruz borbyaenoids.

Axis
The axis of Mayulestes is clearly specialized in its large, long and triangular spinous process, a derived feature of borhyaenoids, also found in Thylacinus. It is more derived than in Pacadelphys and other didelphids, except Didelphis. A very long and uriangular spine of the axis is also present in creodonts and carnivorans and represents an adaptation to hypercarnivorous dier since these animals kill their prey with their jaws, which requires grear strength of the neck musculature. A large triangular spine of the axis is also present in Zalambdalestes but, in this Late Cetaceous mammal from Mongolia, the structure of the spine of the axis seems to indicate that the anterior part of the neck was immobile which would be indicative of a rendency toward saltatorial habits (Kielan-Jaworowska et al. 1979: 239). However, the axis of Mayulestes is shorter anteroposteriotly than that of the other borhyaenoids and Thylacints, a condition which represents the primitive one. The lack of a totally enclosed rransverse foramen is a primitive feature also found in the I'alacocene didelphoid Pucadelplys. In this respect, Mayulestes is more primitive than the other borhyaenoid, this fordmen being always present in the latter.

Other cerviáal vertebrae

The major characteristic of the cervical vertebrae of Maymelestes is their relative shortness when compared to those of the other borhyaenoids. The reliet of the ventral side of their centra being less pmonounced than in the Santa Cruz borhyaenoids, a weaket musculature of the neck is suggested. The shorter and weaker neck is probably related to a lesser mobility of the neck. This condition is clearly less specialised than that of the other borhyaenoids since lengh and strength of the neck are classical adaptations to hyperpredaceous habits also observed in camivorans, creodonts and thylacynids. Mayulestes is, however, clearly more derived than several unspecialised (in this respect) didelphoids (Pucadelphys, Caluromys, Monodelphis, Metachirus, Pbilander).

Thoracic and lumbar vertebrate

As in Pucadelphys, the anticlinal vertebra (the vertebra where the spinal orientation reverses from a posterior orientation in the preanticlinal vertebrae to an anterior orientation in the postanticlinal vertebrae) is located much more posteriorly in Mayulestes than in Cladositis and Prothylacymus, since it occurs on the lumbar vertebrae, between L. 3 and L. 5 (the spinal process of L4 is not preserved). In Cladosictis and Prothylacynus, the anticlinal vertebra is 'I'11. The anticlinal vertebra is L.1 in Zalamboldestes, L.2 in Puciadelplys, berween L2 and L4 (the spine of L3 is broken) in Asiutherium. L3 in Metachirus, L5 in Mammosa and Cahuronys. L6 in Monodelphis and T11 in Perameles - a very dynamic curso-saltatorial Australian marsupial (Novak \&e Paradiso 1983). High and strongly anteriotly oriented spines of the lumbars are also observed in carnivorans (canids and felids) and creodonts, where the spine inversion commonly takes place on the last thoracics. This condition is related to a fast running. A posterior position (i.e. lumbar) of the inversion is observed in early marsupials and placentals and in mose living genera of the conservative family Didelphidae. Therefore, Mautlestes would retain the primitive condition of that character state.
The size and shape of the neural spine of the lumbar vertebrac is also an imporrant issue. The elevated and anteroposteriorly short spine of the
L.5 of Maytuestes clearly differs from the low and anteroposteriorly long spine observed in the living didelphids. Even in Metachirus, a terrestrial didelphid with some cursorial and saltatorial habits (Charles-Dominique, pers. comm., 05/1996), the morphology of the spine does not fundamentally differ from that of Caluromys, the most arboreal living didelphid. The major difference lies in the position of the anticlinal vertebra, which is more anterior in Metachirus [in relation to the curso-salatorial (terrascansorial of Szalay 1994) habits of this genus]. Canids (cursorial) and felids (leaping cursorial) generally have high and anteroposteriorly short neural spines of the lumbars. Peramelids, which are extremely agile cursorial and saltatorial marsupials have very high, short and widely separated neural spines of the lasts lumbars. This morphology is regarded here as related to cursorial and/or saltatorial locomotion more than to fossorial habits as suggested by Marshall \& Sigogneat-Russell (1995). As a matter of fact, none (with one exception) of the fossorial mammals examined during this study bears this kind of neural process on the lumbar vertebrace notoryctids, dasypodids, talpids, bathyergids, spalacids, geomyids, fossorial murids (mole-rats), meline mustelids. It is true that aardvarks have high and slender processes, however, they are not oriented anteriorly. Purthermore, it is noteworthy that, as stated by Novak \& Paradiso (1983), although aardvarks are extremely efficient diggers, they can also run very fast when chased. In return, high and relatively slender (not always in some carnivorans) neural processes are found in cursorial and/or saltarorial mammals: kangaroos, canids, felids, some viverrids, murids (gerbils and hopping mice), dipodids, sciurids, chinchillids (Lagostomus, Lagidium, Chinchilla), caviids (Dolichotis). Since neither Mayulestes nor Pucadelphys show obvious cursorial adaprations, it is therefore likely that they were sapable of some leaping [pertaps a sort of leaping run, as described by Jenkins (1974) in tupaiids], rather than digging as stated (for Pucadelphys) by Marshall \& Sigogneau-Russell (1995). In Mayulestes, an elevated neural spine is known only on 1.5 (it was probably present on LA and L6 but it is broken on L4 and L6 is not preser-
ved). The spine of L1-3 is relatively low and long anteroposteriorly. In Cladosictis, the neural spines of the six lumbars are elevated, longer anteroposteriorly and more inclined anteriorly than in Mayulestes. In Prothylacynus, only the last three lumbars are known; each has a neural spine anteroposteriorly longer (more robust) than in Mayulestes. Because of the morphology of the spine of the last thoracics and because of the position of the anticlinal vertebia (T11), it is likely that the neural spines of the firss lumbar vertebrae of $P_{\text {rothylacynus }}$ were relatively similar to those of the posterior lumbars. The morphology of the neural spine of the lumbar vertebrae (high, slender and widely separated) and the anterior frosition (on the last thoracics) of the anticlinal vertebra in Cladosictis and Prothylacynus indicates a more robust back musculature for these taxa, which could be interpreted as indicating some cursotial and/or probably somebounding ability. The more posterior position of the anticlinal vertebra and the morphology of the lumbar neural spine of Maytlestes (low in the anterior lumbars) suggests that it was less specialised in these funcrions than Cladosictis and Prothylacynus. It is obvious that Mayulestes could run relarively fast (as moss living didelphids can do), but it certainly did not have what is commonly called cursorial hathits. The morphology of the neural spine of the L. 5 would indicate some leaping or bounding ability in Mayulestes although to a lesser extent than in the Santa Cruz borhyaenoids because of the morphology of the neural process of the anterior lumbar and the position of the anticlinal vertebra.
The long and ventrally recurved transverse process of the last lumbars is indicative of powerful flexors of the vertebral column. Flexion of the verrebral column is performed by the quadrati lumborum and the psoas major and minor muscles when acting jointly. The size of these muscles is compatible with that of the lumbar epaxial musculature (erector spinae), which is denored by the height of the neural processes of the posterior lumbars and the eversion of the ilia. Therefore, the morphology of the transverse processes of the last lumbars is indicative of. significant mobility of the posterior part of the

TABLE 2. - Proportions of the lumbar vertebrae in some borhyaenoids and didelphids. L, length of the centrum; Wa, anterior width of the centrum. All measurements are in millimeters.

	L 1			L 2			L 3		
	L	Wa	Wa / L	L	Wa	Wa/L	L	Wa	Wa/L
Mayulestes (MHNC 1249)	7.9	4.5	0.57	7.9	4.5	0.57	8	4.9	0.612
Cladosictis (YPM PU 15170)	20	16.4	0.82	-	-	-	-	-	-
Prothylacynus (YPM PU 15700)	-	-	-	-	-	-	-	-	-
Pucadelphys (YPFB Pal 6106)	3.7	3	0.81	4.5	2.9	0.644	4.9	2.8	0.571
Caluromys	8.3	5.2	0.626	9.4	5	0.532	10.7	5.3	0.495
Marmosa	2.9	2	0.69	3.4	1.9	0.56	3.8	1.9	0.5
Monodelphis	3.8	2.7	0.71	4.3	2.8	0.65	5.2	2.8	0.54
Metachirus	6	3.7	0.616	7	3.6	0.514	8	3.8	0.475

	L4			L5		L6			
	L	Wa	Wa/L	L	Wa	Wa/L	L	Wa	Wa/L
Mayulestes (MHNC 1249)	8.6	5	0.581	7.4	5.4	0.729	-	-	-
Cladosictis (YPM PU 15170)	-	-	-	-	-	-	22	17	0.77
Prothylacynus (YPM PU 15700)	34.5	22.5	0.652	-	-	-	-	-	-
Pucadelphys (YPFB Pal 6106)	5.5	2.8	0.509	5.5	3	0.545	4.3	3.3	0.767
Caluromys	11	5.5	0.5	11	5.3	0.48	10.5	5.4	0.514
Marmosa	3.9	2	0.512	3.5	1.9	0.54	3.1	2	0.645
Monodelphis	5.3	2.8	0.53	5.2	2.5	0.48	5.2	2.3	0.442
Metachirus	8	3.9	0.487	8	4.2	0.525	7.3	4.2	0.575

vertebral column (last thoracics and lumbars). Jenkins (1974; 106-108) has noted four features, related to the dorsoventral mobility of the T11-T12-T13-L. 1 portion of the vertebral column in tree shrews. They are: (1) the ventral length of the centrum is shoreer than the dorsal (neural); (2) the distance between the centres of the pre- and post articular surfaces is greater than the centrum length (measured between the centres of the nuclei pulposi); (3) the length of the zygapophyseal prearricular surface is comparable or slightly longer than thar of the postarticular surface of the preceding vertebra; (4) the anterior margin of the prearicular surface is more ventral than the posterior margin which gives an anteroposterior convexity to the articular surface. In Mayndestes, character (1) is Cound on the last thoracic (T13?) but is not very well marked; it is obvious on L1-L.2-\{.3 and was possibly present on L.4. Charactet (2) is present on T12?, 'T13?, L1, L2, L3 and L5 (no measurement cain be made on L4). Character (3) is present from T12? to L4 (no measurement can be
made on L5). Character (4) is present in Mayulestes on T12?, T13?, L1 (not observable but probably present), L2, L3 and L4 (litde marked). The presence of these fearurse on the posverior part of the vertebral column of Mayulestes thus indicates grear mobilicy: However, Mayulestes differs from the tree shrews since the most mobile portion seems to be located between T13? and L3 or L4 as opposed to T11 and L1 in the latter (Jenkins 1974). This difference is probably due to the fact that the antidinal vertebra of Mayulestes is located much more posteriorly (1,4) than in Tupaia gisis (T10).
The centra of the last thoracic and lumbar vertebrae are proportionally longer in Mayulestes than in Cladasictis and Prothylacyuns, while the contrary is obsetved on the cervicals. In this respect, Mayulestes resembles Pucadelphys and the living didelphids (Caluromys, Monodelphis, Marmosa, Mctachirss). Comparison of the fourth lumbar vertebra in Mayulestes, Santa Cruz borhyaenoids and didelphids illustrates chis differences of proportions well (Table 2). The rela-
rive size of the lumbar vertebrac of Mayulestes, closer to that of the didelphids than to that of the Miocene borhyaenoids, is regarded here as a plesiomorphic state within the superfamily.
Cursorial camiverans generally have elongated, large lumbar vertebrae. The fact that Miocene burhyaenoids had relatively short centra of the lumbar vertebrae demonstrates that they were certainly not as highly specialised cursorial mammals as thylacinids, canids and some felids. However, as noted above, the Santa Cruz. borhyaenoids certainly had some cursorial ability related to their hyperpredaccous habits. In Mayulestes, this was apparently absent or much less developed than in the Santa Cruz borhyaenoids.

Cautal vertebrae

The morphology of the caudal vertebrae of Mayulestes suggests some prehensile ability. A prehensile tail is observed in all living didelphids lalthough reduced in Lutreolinu (Novak \& Paradiso 1983)].
Marshall \& Sigogneau-Russell (1995. 118, 119) have suggested that Pucadelphys andinus did nor have a prebensile tail contra Muizon (1991). These authors stare that "in Didelplis, the caudal vertebrae have specialisations associated with a prehensile rail (Krause \& Jenkins 1983: 242): e.g. [1)] tail commonly wice or more the length of the precaudal vertehral column; [2)] a inedian sulcus for abductor (sic) museles and rendons crosses ventrally all the verrebrae; [3)] zygapophyses are more vertical; [4)] transverse processes are hroad and robust for muscle attachments and present even in most distal caudals; moreover [5)] haemal apophyses, that cuclose abductor rendon and muscle, are large and developed along entire length of rail: [6)] finally, sacral spinous processes are relatively well-developed, commonly subequal to the height of the spinous processes of posterior lumbar vertebrae".
Several comments have to be made on Marshall \& Sigogneau-Russell's list. First, features 2 and 3 are not cited by Krause \& Jenkins (1983) as relared to a prehensile cail. If feature 2 is indeed an adaptation relared 10 a prehensile tail, why is it absent in Marmosa, whose tail is strongly prehensile (Novak \& Paradiso 1983)? As mentioned
above, the ventral sulcus, well marked in Didelphis and Caluromys, does not receive an abductor muscle but the median coccygeal aorta. On the ridges which border the sulcus laterally are inserted the sacrucoccygei ventralis and medialis muscles, which form a deep furrow for the sacrococcygeal artery. The term abductor used by Marshall \& Sigogneau-Russell (1995) is inappropriate for the tail since an abduction is a movement of an extremity away from the median plane; the movement they refer to is a flexion of the tail, Furthermore, the haemal arches (not apophyses) do not enclose muscles but the sacrococcygeal artery. Marshall \& Sigogneau-Russell (1995: 118) state that "no such specializations except high sacral processes and very slight ventral sulcus on caudals exist in Philander and Metachirus". However, both genera also have a tail which is twice as long as the presactal vertebral column and haemal arches developed along nearly the entire length of the tail. It is true that the transverse processes of the posterior caudal ate not as developed as in Caltumps or Didelphis but it is also true that they are at least as large as in the tail of Marmosn, one of the most prehen-sile among didelphids. Furthermore, the tail of Pbilander is reported as prehensile (Novak \& Paradiso 1983 and Julien-La Ferrière pers. comm.). Novak \& Paradiso (1983: 12) state that the didelphid tail is "long, scaly, very scantily haired and prehensile". Concerning Lutreolina, one of the moss terrestrial genus. these authors state that the tail is not as prehensile as in other didelphids. They also report the observation of an individual of Monodelphis domestica carrying a piece of paper by curling is tail downward around the paper. Therefore, all didelphids appear to have some degree of prehensility of the tail. The greater ability is found in Didelphis, Mamosa, Caluromys and Philander and the lesser ability is found in Monodelphis. Lutreolina and Lestodelphys.
Marshall \& Sigogneau-Russell (1995: 119) have stated that there was no indication that the tail of Pucadelphys was prehensile. However, the posrerior caudal verrebrae of Pucadelplys bear large and robust transverse processes and the tail is long (estimation of 30 verrebrae). The C6 and C 7 of Pucadelphys are strikingly similar to C5

FIG. 48. - Anterior caudal vertebrae of: A, Pucadelphys (C6C8); B, Caluromys (C5-C7). Not to scale.
and C 6 of Caluromys, the most arborcal living didelphid (Fig. 48). In the CG of Pucadelplys and C5 of Caluromys, the transverse process is located posteriorly on the centrum and occupies more than half of iss length. It is much longer than in the preceding vertebra. The Co of Caluromys and the C7 of Pucadelphys differ from the respective preceding vertebra by the adjunction of a small anterior transverse process, much shorter anteroposteriorly than the long posterior transverse process. In the posteriot caudal vertebrae of the two genera, the transverse processes are well-developed, as large as in Didelphis and certainly much larger than in Marmosa or Philander. Because of the large transverse processes of C6 to C9 (YPFB Pal 6106) and in C16? and C17? (YPFB Pal G110), I consider that Pucadelphys had a prehensile tail. It is not possible to evaluate the deyree of prehensility of the rail since the rail of Pucadelphys is nor complete in the available specimens and because there seems to be some inconstancy in the correlation between the anatomical fearures regarded as relared to a prehensile tail and the actual prehensility of the tail in living didelpheds. The statement by Marshall \& Sigogneau-Russell (1995) that there were no haemal arches in Pucadelphys is contradicred by the presence of a fragment of arch still
present berween C7 and C8 of YPFB Pal 6106 and of a partial arch below C4 of YPFB Pal 6110. The lack of mose haemal arches in Pucadelphys is regarded here as a loss duc to fossilisation. The only feature mentioned by Krause \& Jenkins (1983) and which is absent in Pucudelplys is the large size of the spinous processes of the sacral vertebrae. In Pucadelphys, these processes are broken, but in view of their smaller diameter it is likely that they were not as high as those of the last lumbar. However, it is noteworthy that the most important movements of a prehensile tail are the flexions of the tail and the spinous process of the sacral vertebrae bears attachment for extensor muscles of the tail.
The two posterior caudal vertebrae of Mayulestes are extremely similar to the C9 of Pucadelplyys and to the C7 and C8 of Caturomys, mainly in the large size of their anterior and postetior transverse processes (Fig, 49). They are, however, longer than in Pucadelphys and slightly shorter than in Caluromys. Because of this morphological similarity it is probable that Mayulestes had a prehensile tail.
Cattmill (1974: 51) has stated that most prehen-silc-tail animals (except primates) "practically never make leaps of any distance and generally move cautiously from one support to another'. As shown below, it is probable thar Mayulestes was a relarively agile animal capable of some leaping run, as tree shrews, although cerrainly slower. Therefore, a conpradiction would exist between the prehensility of the tail of Mayulestes and the suggested agility of the animal. First, it is necessary to keep in mind that only four caudal verrebrac of Mayulestes are known, therefore, the anatomical support of the prehensile tyail of Mayulestes is still relarively weak. Furthermore, if the rail of Maryulestes was indeed prehensile, it is possible that this function was little used by the animal and being lost in favour of an increasing agility of the locomotion. The tail could have kept the characters and the ability of prehensility although it was not (or little) used as such. A living example of this condition is the terrestrial didelphid Metachirus which indeed has a prehensile tail but which does not use it for climbing. The same can be said of the aquatic didelphid Chironectes. Another interpretation (see below

FIG. 49. - Posterior caudal vertebrae of: A, Pucadelphys $\left(\mathrm{C}_{9}\right)$: B, Mayulestes (C_{8} ? and C_{9} ?); C, Caluromys (C_{7} and C_{8}). Not to scale.
for discussion) would be to consider that the agility of the animal was mainly used on the ground (like Metachirus) and that the arboreal locomotion was slower. In other respect, it is noteworthy that the great jumping agility of the didelphid genus Marmosa contradicts Cartmill's assesement.
The inferred prescnce of a prehensile tail in Pucadelplys (probably) and Mayrulesses (possibly) suggests that these animals are likely to have had some arboreal habits. Furthermore, the generalised occurrence of a prehensile tail in didelphids (to various extent according to the taxa), the most primitive family of living marsupials, would favour the idea that a prchensile tail is a plesiomorphic character state for marsupials and seems to reinforce the hypothesis (Szalay 1984, 1994) that early marsupials were primarily arboreal (see below for discussion).

Forelimb

Scapula. The anatomy of the scapula of Mayulestes denotes a more robust constiturion of the shoulder musculature than in other borhyaenoids and most didelphids, but is similar to thar of Caluromys. The conacoid process is large, strongly recurved and projects more proximally than the glenoid fossa; the acromion projects
proximally below the glenoid fossa and anteriorly beyond the supraglenoid process. The latter receives the otigin of the coracobrachialis muscle whose insertion is located on the posteromedial border of the proximal half of the diaphysis of the humerus The coracobrachialis is an adductor of the forelimb and a flexor of the shoulder. On the acromion (on the hamatus and suprahamatus processes) and on the ventral two thirds of the scapular spine attaches part of the origin of the deltoideus (acromial and spinal) muscle. The insettion of the deltoideus muscle is on the distal two thirds of the deltapectoral crest on the humerus. On the ventral third of the spine and on the anterior margin of the acromion attaches the insertion of the atlantoacromialis muscle (Jenkins \& Weijs 1979), probably a part of the omotansversarius. The origin of the atlantoactomialis muscle is on the posterior side of the wing of the atlas. The deltoid muscle is an abductor of the shoulder and a flexor of the arm when combined with the action of the teres major muscle. The atantoacromialis pulls the scapula anteriorly and makes it rotate anticlockwise. The morphology of the coracoid process and acramion of the scapula of Mayulestes, projected proximally and anteroproximally respectively, denotes the great strength of those muscles and, therefore, the strength of the shoulder articulation. In arboreal mammals, the acromion and the coracoid process are generally well-developed and veutrally (and anteriorly for the former) projected, ofien to a much greater extent than in Mayulestes (tree shrews, possums. opossums, primares, tree sluths, Cyelopes, kinkajou, coendou; Fig. 50). This morpholngy has been related to arboreal habius (Corruccini \& Ciochon 1976; Ciochon \& Corruccini 1977). The proximal elongation of the acromion is likely to be related to improvement of the leverage for the deltoideus (Inman et al. 1944; Latson 1993), an abductor of the arm. Furthermore, a dorsoposterior elongation of the posterodorsal angle of the scapula, as it is observed in Mayulestes and Caluroimys, is also present in most arboreal mammals (Fig. 50). This is especially obvious in primates (Roberts 1974; Larson 1993). The anterior projection of the acromion and the posterodorsal elongation of the posterior angle of

Fig. 50. - Right scapulae in iateral (top) and proximal (bottom) views: A, Mayulestes: B, Caluromys; C, Cladosictis, D, Sciurus; E, Tupaia; F, Propihecus; G. Colobus, H. Hylobates. Not to scale.
the scapula can be related to great ability of anterior extension of the forelimb since, during this movement, at the end of the extension, a better proraction of the limb is produced by an anticlockwise rotation of the scapula. Such movements are performed in acrobatic arboreal activities. As demonstrated by Larton (1993) in arboreal primares, a raised-arm position provokes an important rotation of the scapula while, in terrestrial primates, the movements of the scapula are mainly anteroposterior translations and the rotation is weak. In arboreal primates, scapular rotation is brought about by the action of a muscular couple (Inman et al. 1944; Larson 1993). The upper unit is the cranial trapezius and the lower unit is the caudal trapezius and the caudal serratus anterior muscles (Fig. 51). In Didelphis, the couple of muscles acting during the anterior extension of the forelimb (anticlockwise rotation of the scapula) has an upper unit made of the serratus ventralis thoracis and the caudal portion of the trapezius and a lower unit made of the atlantoacromialis and the anterior portion of the trapezius. In Didelphis, the serratus ventralis thoracis takes origin from the first eight or nine ribs
and inserts on the caudal angle of the scapula; the trapezius originates from the nucchal crest and the supraspinous ligament from the occiput to the level of the thirteenth thoracic vertebra. Its anterior portion inserts on the anterior cdge of the spine of the scapula, while its posterior portion inserts on the posterior edge of the distal third of the spine. The atlantoactomialis links the posterior side of the wing of the atlas to the acromion and the proximal third of the spine (Jenkins. \& Weiis 1979). Acting jointly, these three muscles rotate the scapula counterclockwise and exert an anteriorly directed force on the acrominn and proximal third of the scapular spine and a posteriorly directed force on the posterndorsal angle of the scapula.
The two features of the scapula discussed above (anterior position of the acromion and posterodorsal clongation of the posterodorsal angle) are not as developed on the scapula of Mayulestes as on the scapulae of highly arboreal primates, but they approach the condition observed in Caluromys, the most arboreal didelphid (Fig- 50). The proportions and relative sizes of the supraand infraspinatus fossae are difficult to explain

Fig. 51. - Scaputothoracic misculat couple involved in the rotation of the scapula in Mayulestes [based upon Larson (1993. fig. 2.5) and Jenkins \& Wejs \{1979)]. The anteroventral unit is made of the attantoscromialis and the anterior portion of the trapezius; the posierodorsal unit is made of the serralus ventralis thoracis and the posterior pantion of the trapezus.
mechanically in Mayulestes. In arboreal primates, the infraspinatus fossa and muscle are generally larger than the supraspinatus (Roberts 1974) while the contrary is observed in Mayulestes. However, squirrels have a morphology of the scapula very similar to that of Mayulestes. The posterodorsal angle is strongly elongated, the acromion is ventrally and anteriorly projected, the coracoid process is very long and developed ventrally (much longer than in Mayulestes and any didelphids), the supraspinatus fossa is large, triangular and the infraspinatus fossa is deep long, straight and narrow and its posterior edge is almost parallel to the plane of the spine. Squirrels are well-known to be non-suspensorial atboteal rodents while many arboteal primates ate at least partially suspensorial. The similarities between the scapulae of Mayulestes and sciurids are possibly relared ro similar positional behaviours. Therefore, many aspects of the morphology of the scapula of Mayulestes are similar to those observed in highly arboreal mammals. It is mechanically consistent, with a strong commitment to arboreality, probably to a higher degree than in most living didelphids (except Caluromys).
In Irucadelphys, the morphology of the scapula is nor completely known. However, the best preserved scapula of Pucadelphys andinus (Fig. 18) shows important similarities with that of Mayulestes: ventral and anterior developiment of the acromion and the deep and narrow infraspi-
natus fossa. According to the above discussion these features are apparently consistent with well-developed arboreal habits.
Humerus, ulna and radius. The proximal extremity of the humerus of Mayulestes resembles that of the didelphids more than that of the ather borhyaenoids. The head is relatively circular (in proximal view), oriented more proximally than posteriorly and slightly higher than the greater tubercle (Table 3). In Prothylacymus, the head has a more posterior orientation and is lower than the greater tubercle, two features well-developed in cutsorial mammals (for instance Tbylacinus). Arboreal mammals tend to have a head of the humerus proximally orienced and a low greater tubercle in order to increase the mobility of the joint. In cursorial mammals, a great multidirectional mobility of the articulation is not essential since the movement of the forelimb is mostly anteroposterior and importance is given to the power of the movement. Therefore, modifications of the joint are focused toward stabilisation of the scapulohumeral joint; according to Larson \& Stern (1989), that is the most significant role of the suptaspinatus (which is insetred on the greater cubiercle) in rerrestial primates. The infraspinatus is also involved in that function since it is inserted on the greater tubercle slightly more proximally than the supraspinatus.

Table 3. - Proportion of the head of the tiumerus in various marsupials. L, Length; W, width. All measurements are in millimeters.

	L	W	W/L
Mayulestes (MHNC 1249)	5.2	5.6	1.07
Prothylacynus (YPM PU15700)	2.9	2.9	1
Cladosictis (YPM PU 15831)	1.77	1.35	0.76
Cladosictis (YPM PU 15556)	$1.65 €$	1.3	0.78
Pucadelphys (YPFB Pal 6106)	3.2	3.2	1
Caluromys	6	5.8	0.96
Didelphis	10.3	9.6	0.93
Marmosa	2.3	2.1	0.91
Monodelphis	3.6	3.4	0.94
Metachirus	7.6	5.9	0.77
Thylacinus	27	21.5	0.79
Tupaia	19	16	0.84
Sciurus	7.2	6.8	0.94
Vulpes	3.2	3	0.93

Table 4. - Relative height of the spine of the scapula in various arboreal and terrestial mammals. \mathbf{H}, greatest height of the spine approximalely in its middle part; L , length of the spine at its base from its distal noten (i.e. at base of the acrormion) to the proximal extremity. All measuraments are in millimeters.

	H	L	$L H$
Mayulestes (MHNC 1249)	4.8	19.6	0.244
Pucadelphys (YPFB Pal 6105)	2.9 e	14.4	0.2
Didelphis	6	33.2	0.18
Caluromys 1	4.2	17.6	0.23
Caluromys 2	4.3	18.5	0.23
Marmosa	2.1	9.5	0.22
Monodelphis	3.2	14.3	0.22
Metachirus 1	4.6	25.3	0.18
Metachirus 2	3.5	20	0.175
Philander	6	30	0.2
Sciurus	7	27	0.26
Tupaia	3.3	14.4	0.23
Potos	9.4	47.8	0.196
Herpestes	5.5	31.2	0.176
Mustela	4.3	35	0.12

The authors also conclude that this muscle (supraspinatus) and, therefore, the size of the greater tubercle are not related to speed or power of the movement (Latson \& Stern 1989 1992). A small greater cubercle and a liumeral head proximally oriented generate a greater mobility of the shoulder, which is required in arboreal life. However, as mentioned by Larson \& Srern (1989), the scapulohumeral joine also needs stabilisation during acrobatic behaviour. The authors concluded that "the only way for an animal with a lower greater rubercle to deal with these heavy demands on the supraspinatus for brachial elevation and joint stabilisation is to increase the overall size of the supraspinatus itself" (Larson 1993: 60). There are two ways of increasing the size of the supraspinatus muscle, either by increasing the size of the fossa or by increasing the elevation of the spine. The spine of Mayalestes is more clevated than that of Caluromys but lower than in sciurids and approaches that of tupaiids. It is relatively much more rohust than in Metathirus, a terrestrial didelphid. Table 4 compares the relative height of the scapular spine in several marsupials, one sciurid, one wapaid, one arboreal carnivore and two terrestrial non-cursorial carnivores.

The deltoid crest of Mayulestes is shorter than in the Santa Cruz borhyaenoids bur marches the length observed in the living didelphids (Table 5).
The very salient tricipital crest of Mayulestes received the origin of a robust caput latetale of the triceps brachii muscle. The insertion of this head of the triceps is on the olectanon of the ulna with the capitis mediale and longum. The strength of the triceps brachii of Mayulestes is also revealed by the great length and size of the olecranon of the ulna and by the imporrant anterior curvature of the proximal third of the shaft of that bone. This morphology indicates important tractions of the triceps on the olecranon. A similar morphology of the olecranson is found in living didelphids, being strongly ermphasised in the inost arboreal taxa (Caluromys, Marmosit). It is also obvious in Puradelphys (Figs 25, 52). In Caluromys and Mayulestes, the tension of the triceps brachii on the olecranon is even greater since its anteroproximal angle is strongly elongared anteroproximally. Such a morphology of the proximal half of the ulna exists. to various extents, in many arboreal [espectally arboreal quadrupedal or arboscansorial (Szalay 1994)] mammals: didelphids, phalangerids, Nasua, I'oros, sciurids and tupaiids. In primates and xenarthoans there is a tendency to reduce the length of the olecranon in order to allow a greater extension of the elbow. The posterior edge of the ulna is straight in terrestrial mammals, even concave in highly cursorial taxa, with the olecranon posteriorly oriented (Bown et al. 1982). In the Santa Cruz borhyaenoids the proximal third of the ulna is not bent anteriorly. In Prothylacynus and Cladosictis; the posterior border of the ulna is concavoconvex but the bone is globally straight. In Borbyama, the posterior border of the ulna is straight in its proximal half and concare in its distal half and the oleccanon is long, robust and has a very quadrate proximal extremity. The morphology of the ulna of Borhyana is indicative of a terrestrial mammal with some cursorial ability. The ulna of Thylacinus (a cursorial marsupial) is similar to that of Borbyatna, but more gracile and more recurved posteriorly.
The distal extremity of the humerus of

Table 5. - Relative length of the deltoid crest. Lh, total length of the humerus: Ler, length of the deltoid crest. All measurements are in millimeters.

	Lh	Lcr	Lcr/Lh
Mayulestes left (MHNC 1249)	32.3	18.4	0.57
Mayulestes right (MHNC 1249)	34.6	19.2	0.555
Prothylacynus (YPM PU 15700)	161	103	0.639
Cladosictis (YPMM PU 15702)	113	80	0.708
Pucadelphys (YPFE Pal 6106)	17.8	9.5	0.53
Didelphis	62.7	35	0.558
Caluromys	40.8	21.7	0.53
Marmosa	14.4	7.8	0.54
Philander	42.8	22.8	0.53
Monodelphis	20.5	12	0.585
Motachirus	31.7	16.4	0.51
Thylacinus	178	129	0.724

Mayulestes bears a very strong lateral epicondyloid crest and a robust distomedially elongated medial epicondyle. On the posterior side of the epicondyloid crest attaches the distal part of the origin of the caput mediale of the triceps brachii, a powerful extensor of the ellow whose insertion is on the anterior anteromedial and anterolateral surface of the olecranon of the ulna (the distal portion of the caput medial of the triceps is the
anconeus muscle, which is apparently fused to the medial head of the triceps in dasyurids (Kielan-Jaworowska \& Gambaryan 1994)]. On the anterior side of the lateral epicondyloid crest and on the lateral epicondyle attach the origins of the extensor muscles of carpus and digits and the brachioradialis muscle. On the medial epicondyle are the origins of the flexors musdes of carpus and digits, the epitrochleoanconeus and the pronator tercs. Therefore, the morphology of the distal extremiry of the humerus of Mayulestes indicates the power of the flexion and extension of the manus and a good ability in the pronation-supination movements. The great depth of the fossa on the medial side of the proximal third of the ulna for the origins of the flexur carpi unaris and flexor digirorum profundus muscles as well as the strong medial bending of the proximal third of the bone also contribute to suggest ability of powerful flexion of the digits and manus, for instance for grasping branches. These aspects of the morphology of the elbow of Mayulestes rescmble those of Caluromys (the most arboreal living didelphid) and Pucadelphys (although the features mentioned above are less pronounced in rhis genus; Fig. 52). They are more pronounced in Mayulestes than in most

H

Fig. 52. - Lateral view of the left ulna in several marsupials: A, Mayulestes; B, Caluromys; C, Marmosa; D, Didelphis; E, Metachirus; F, Pucadelphys; G, Prothylacynus; H, Borhyaena. Not to scale.
other living didclphids and Santa Cruz borhyaenoids. Potos and Nasta, arboreal and semiarboreal carnivorans respeetively, have the same modifieation of the ellow responsible for powerful flexion and extension of the manus and digits. Sciurids also have a well-developed hateral epicondyloid crest, a distomedially projeeting medial epicondyle and a medially bent proximal extremity of the ulna. A long and anteriorly bent olecranon has been regarded as related to arboreal quadrupedalisme since, in such forms, the forelimb is always in partial tlexion and the extensors of the elbow are always tesisting to flexion (Bown at al. 1982). This feature, extremely developed in a predator like Mayulestes, could also indicate bounding ot leaping ability.
On the ulna of Mayulestes, the trochlear notch is more open (in medial view) and shallower than in the Santa Cruz Buthyaenoids and some didelphids (Didelphis, Metachirus). Furchermore, the trochlear and radial notches form an angle of approximately 120° in anterior view. As mentioned above, this condition is found in the most arboreal didelphids (Caluromys, Marmosa, Didelphis). In a cursorial marsupial such as the thylacine and in the sub-cursorial Borbyaema (see below), the trochlear notch is less open than in Mayulestes and the angle berween the trochlear and radial notches (in anterior view) is clearly inferior to 90°. In other words, the trochlear and radial notches are well-separated by an elevated crest and the radial norch is well-exeavated in terrestrial (a priori in eursorial) forms, while the contrary is true in arboreal quadrupeds. The arboreal morphology (Cahuromys, Didelphis and Mayulestes) would indicate an elbow that does not receive much articular stress and does not require an important stability of the joint and. therefore, would designate relatively slow animals. However, this morphology of the radioulnar articulation also indicates a great mobility related to pronation-supination movements. This is corroborated by the great development of the supinator crest, Fossa and pronator ridge. In the very agile squitrets, the trochlear noteh is similar to that of Didelphis, the angulation between both articular surfaces approaches 120° and the radial noteh is very shallow. Furthermore, in Mayulestes, the long and robust
olecranon indicates a powerful triceps and the strong attachment crest of the ulnar collateral ligament medially are indications of a faitly stable elhow joint, which is in agreement with the postulated atetivity. Therefore, the morphology of the proximal articulation of the ulna of Mayulestes scens to be compatible with agility. Whatevet that may be, it is clear that the morphology of the humeral arriculation of the utna of Mayulestes tesembles that of Caturomys, more than that of any other didelphid or borhyaenoid. The apparent weakness of the elbow joint noted on the articular surfaces was probably compensated for by ligaments and muscles as in active tupaiids and sciurids. It is also noteworthy that the relative breadth of the trochleat noteh, when compared to that of Caluromys, is a factor of stability of the elbow, as indicated by Fleagle et al. (1975: 136) for the ulna of Argyptopithecus.
Bown at al. (1982: 626) have listed several features of the ulna which are related to arboreal quadrupedalism. They ate: (1) long olecranon extended proximally in line with the shafr; (2) rochlear notch relatively shallow with a low coronoid process; (3) small radial norch not deeply excavated; (4) anteroposteriorly deep ulnar shaft, posteriorly convex. According to these crireria, the ulna of Mayulestes is thar of a highly arboreal quadruped.
On the radius, the proximal articulation with the capiutum of the humerus is transversally elongated and, as preserved, does not suggest pronouneed pronation-supination movements, which contradicts the above statements. The condition of Mayulestes is similar to that of Borigatana and Cladusittis, but differs from Prothylatynus where the radiohumeral articulation is more oval-shaped and less transverse. Although, as noted above, the morphology of Mayulestes is probably the result of some post-morrem erosion andlor deformation, it is likely that its pronation-supination ability was slightly less developed than rhat of living didelphids. It is probable thar the movernents had less amplitude, although it is difficult to determine to which extent. In this respect, it is notewotthy that, in living didelphids which have well-developed pronationsupination, the proximal articularion of the radius is never torally circular as in arboreal pri-
mates or tree sloths but is oval, although less transverse than in Mayulestes, Cladosictis and Borhyaena. The relatively oval-shaped proximal articulation of the radius of Prothylacynus indicates superior pronation-supination ability when compared to the other Santa Cruz borthyaenoids. Metacarpus. As noted above, borh extremiries of McV are flattened in the same plane. Therefore, since the articulation with McIV (on the palmar side of the proximal epiphysis of McV) is roughly perpendicular to the dorsopalmar plane of the hand, the articulation between the McV and the first phalanx of the digit is also perpendicular to the dorsopalmar plane of the manus. This indicates that digit V had a plane of flexion which rended to be at 90° with that of the other fingers. This condition (which is approaching thar of Mcl and McII in man) would indicate an important ability of prehensility of the manus, which obviously facilitates grasping and is clearly useful for climbing trees.
Furthermore, the medially recurved distal cxtremity of the McV (also observed, but to a lesser extent, in the living didelphids) rends to shift the phalanges of the finger toward the centre of the manus. This condition is also useful for grasping, an action fundamental in didelphid arboreality.

Hindlimb

Innominate. The ilium of Mayulestes is proportionally slightly longer than in Cladosictis and Prothylacynus but as shown in table 6 the difference is more important regarding living didelphids, whose ilia are clearly long and narrow. Such a morphology is found in a large number of living marsupials (it is absent in Thylacimus and Pernmeles). The Palaeocene didelphoid Pucadelphys andinus has an ilium relatively shorter than that of the living didelphids and resembles Mayulestes in this point. Thercfore, the oldest known borhyaenoid has an ilium longer than the younger forms and the oldest known didelphoid has an ilium shorter than the Recent didelphids. What then is the primitive morphology of the ilium? Short or lung? Marshall \& Sigogneau-Russell (1995) regarded the dorsoventral expansion of the wing of the ilium in Pucadelphys as a specialisation but consider its shortness as a primitive scate. Triconodonts have a narrow and elongare ilium (Jenkins \& [arrington 1976) although, apparently not as long as in the living didelphids. The ilium of Henkelothorium is longer than that of Mayulestes (Krcbs 1991). The same is true in Asiatic (Kielan-Jaworowska \& Gambaryan 1994) and North American multituberculates (Krause \&

TABLE 6. - Relative length of the ilium in various marsupials and placentals. Hil, maximum height of the ilium at mid-length; Lil, length of the ilium; Lt, total length of the innominate. All measurements are in millimeters.

	Lil	Lt	Lil/Lt	Hil	Hil/Lil
Mayulestes (MHNC 1249)	25.2	44	0.572	6.5	0.258
Cladosictis (YPM PU 15702)	70.5	124	0.568	26	0.368
Cladosictis (YPM PU 15170)	60 e	106	0.566	21	0.35
Prothylacynus (YPM PU 15700)	97	182 e	0.538	35.5	0.364
Thylacinus	104	182.4	0.57		
Pucadelphys (YPFB Pal 6106)	15	26.4	0.568	5	0.33
Didetphis	50.5	75.5	0.668	12	0.23
Metachirus	26.2	40	0.65	6.4	0.24
Caluromys	30.3	45	0.677	6.2	0.2
Marmosa	11.8	17	0.69	1.6	0.13
Phalanger	47.5	75.5	0.63	10.5	0.22
Perameles	49.5	85.7	0.56	17.8	0.36
Sciurus	24.3	41	0.59		
Nasua	56	87.6	0.64		
Ailurus	58.3	95	0.61	25	0.43
Martes	32	56.5	0.56		
Canis	55	88.5	0.64	26.2	0.47

Jenkins 1983). Barunlestes, a Late Cretaceous eutherian from Mongolia, also has long and slender ilium (Kielan-Jaworowska 1978) although apparently not longer than in Mayulestes. A long and narrow ilium is also present in Asiatberium (Szalay \& Trofimov 1996). It seems therefore that a long and narrow ilium could represent the plesiomorphic condition of the mammalian ilium. Cotssidering the morphology of the ilium of Mayulestes, longer than thas of the younger borhyaenoids, iṭ is likely that early history of the superfamily is characterized by a shortening of the ilium. A long and slender ilium scems to be fairly constant in early mammals, which would indicate that it represents the plesiomorphic condition. Furthermore, such a morphology of the ilium is by far the moss common one within marsupials. The short ilium of Pucadelplys would hence be specialised compared to that of the living didelphids. However, skeletons of Late Creraceous or Palaencene matsupials are too scarce to provide adequare compatison and, so far, it seems difficult to answet this question.
Mayulestes and Pucadelphys have conspicuously everted iliae wings contary to the condition observed in the living didelphids and phalangerids which have relatively straislat and narrow wings. An important extroversion of the wing of the ilium is found in some cutsorial (thylacine. canids, most ungulates), Fussorial [wombat, bandicoots (also cursosaltratotial), aardvark, badgers, ratel], aquacic (phocids. walrus, sea otter) and arboreal mammals [koala, phalanger, small and giant panda, arboreal tree shrews, squirrels, lemurs, indri, spider monkey (the five later, capable of powerful leaping)|. In the phalangerids, the iliac wings are slightly everted ar their apices. Bears and anteaters also have everted ilize wings. In Clatosictis and Prothylacynus, two borlyaenoids from the iniddle Miocene of the Santa Ctuz beds (Argentina) the cversion of the ilium is comparable to that of Mayylestes. On the medial side of the wing of the ilium the erector spinae is inserned (consisting of the iliocostalis and longissinus muscles), a fowerful extensor of the verrebral column. The origin of this mascle is on the dorsal side of the thoracic and lumbar vertebrae and ribs. An everted ilinm, therefore, leaves more space to the posterior portion of the
erector spinae at the angle berween the vertebral column and the pelvis and denotes that this muscle was powerful in Maytestes, as in Cladosictis and Prothylacynus. The same can be said for Pucadelplys. On the lateral side of the iliac wing are the origins of the gluci inedius and superficialis, muscles inserted on the tip of the greater trochanter (gluteus medius) and, more distally, on the lateral side of the greater trochanter (gluteus superficialis), An everted ilium allows for more space for the glutens medius and superficialis (and a greater muscular mass) than in an animal with a non-everted ilium as is the case in living didelphids.. Other muscles originaing on the anceroventral region of the ilium are the sartorius. and tensor fascia lata. These muscles are inserted on the patella and are flexors of the bip and/or extensors of the leg. An everred ilium gives more power to these muscles since it increases the lever arm of their action. The morphology of the wing of the ilium of Maytlestes therefore indicares a more important activity of the vertobral column and coxofemoral articulation than in the living didephids. The epaxial musculature mentioned above contrilutes to the propulsive stroke of the hind limb wids verrical on lowtizontal (as in seals and waltuses) movements of the vertebral column. Those movements can occur in all the ecolypes mentioned above. In the case of the arboteal ecotypes (as noted above, Mayulestes has several features of its forelimb that can interpreted as arboreal), eversion of the iliac wing can be due to leaping (lemuts, indri, spider monkey), to leaping run [tree shrews (Jenkins 1974), squirrels], or to a vertical climbing position as observed in koalas and sometimes in cuscuses. Living didelphids which generally (when unstressed) do not move very fast, which walk on the branches with the help of their grasping manus and pes and which are not jumpers, do not have an everted ilium. The onty living didephid which has an ilium slightly more evered than the ocher ones is the terrestrial genus Metachirus. This is probably related to the terrascansorial (§zalay 1994) mode of terrestrial locomerion of the brown four-eyed opossum, which is extremely agile on the ground and whose locomotion is a sort of leaping run (Charles-Dominique pers. comm.). It is nore-
worthy that the Plio-Pleisrocene saltatorial marsupial Argyrolagus has an everted ilium (Simpson 1970). Thetefore, the eversion of the ilium of Mayulestes probably denotes some leaping or bounding ability.
The anteroventral iliae spine of Mayulestes is clearly deflected ventrally as in Cladosictis and Prothylacynus (but to a lesser extent). Among living didelphids the only form which shows an anteroventral iliac spiné slightly deflected anteroventrally is the terrascansotial Metachirus. On the medial side of the anteroventral region of the iliac wing is inserted the quadratus lumborum, an importani flexor of the vertebral column. This muscle was hence powerful in Mayulestes. This condition is in agreement with the large transverse processes of the lumbar vertebrae (where the muscle originates) and with the inferred strength of the erector spinae (the antagonist muscle of the quadrarus lumborum and psoas minor). On the anteroventral iliac spine the obliquus abdomini internus was also probably inserred, as in many orher marsupials (Elfuman 1929). This muscle is another flexor of the trunk. Flexion of the vertebtal colunin is an important movement in cursorial and saltatorial mammals and acts in synergy with the recovery stroke of the hindlimb when the animal is running or leaping (Elfinian 1929). The fact that the anteroventral iliac spine of Mayulestes is relatively more developed than in the arboreal didelphids indicates that, although certainly not cursorial, it was probably capable of relatively fast running (probably for a relarively short disrance) andlor some bounding. The greater development of this spine in Cladosictis and Prothylatynus is indicative of some cursorial abiliry (probably for short distances) in those Santacruzian forms and, very prohably, bounding in order to seize thcir prey by surprise. This morphology of the anteroventral angle of the iliac wing is also present in the cursosaltatorial (but also partly fossorial) Perameles and in the superfossorial Orycteropus. However, siluce ir is absent in other fussorial mammals (wombar, fossorial rodents, armadillos, meline mustelids, giant anteater) it is probably not related to digging. Alrhough capable of a relatively fast gallop when chased (Novak \& Paradiso 1983),

Orycteropus is certainly not a cursorial animal. No interpretation is given here of the ventrolaterally deflected anteroventral iliac spine of Orycteropus. In Perameles it is probably related to the pronounced leaping and running ability of this animal.
It has been shown above that Mayulestes bears several features that can be relared ro arboreality. Therefore, if this inverprerarion is correct, the everted ilium and the well-developed anteroventral iliac spine of Mayulestes could be interpreted as indicating some running and/or leaping ability, perthaps approaching the extremely fast and agile leaping run of tree shrews and squirrels bur certainly not as fast. Marshall \& SigogneanRussell (1995: 150) have suggested that Pucadelphys had both leaping and digging ability. Since the scapula and the caudal vertebrae of Pubadelplos have been shown to have characters compatible with arboreality (shape and position of the acromion and prehensile rail), an interprerarion similar ro that of Mayulestes could be given for the ceverted ilium and the ventrally deflected anteroventral iliae spine of Pucadelphys. They are therefore preferentially related here to leaping rather than digging funcrion.
The tuberosity for the rectus femoris is slightly larger in Mayulestes than in the living didelphids. However, it is much smaller than in Cladosictis and Prothylacyitus. A well-developed cuberosity for the recrus femoris is found in peramelids, sciurids, tupaiids, canids, leporids, aardvark, giant anteater, some fossorial and some retrestrial codents, lemurs, indri, Argyrolagus. Pucadelphys and Barumlestes. The rectus femoris is a powerful extensor of the knee and a flexor of the hip. Ir is an efficient actor during the srroke (if the extensors of the hip prevent it from flexion) and during the recovery phase. A powerful rectus femoris is an important advantage to increase the power and strength of the stroke. The need for a powerful stroke of the hindlimb is easily understandable in a fast runner, in a jumper or in very agile and active small mammals (arbo- or terrascansorial). Ir is also essential in an animal which needs to be able to escape very quickly (because of predators or any kind of social behaviour). In Mayulestes the relatively small rectus femoris (only slightly larger than in the living didephids)
would indicate a much less active animal than a tree shrew or a squirrel but, a little more than in the living didelphids. On the contraty, Pucadelphys, with a well-developed tuberosity, probably had a stronger rectus femoris than in the living didelphids which crould be related to an important agility possibly as is observed in squirrels or tupaids. In Cladosictis and Prothylacynus which ate much larger animals, the inferred large size of the recuis femoris tuberosity could be related to bounding alility, an action used by on-cursorial predarors which lie in wait and which is generally combined with fast but short run.
The ischiatic tuberosity of Mayulestes is smallet than in the Santa Cruz borhyaenoids and most living didelphids. It approaches the size of that of Calurnmys. A well-developed ischiatic spine is found in cursorial (thylacine, canids, most ungulates, Dolichatis), cursosaltatorial and saltatorial (lagomorphs, dipodids mendents), fossorial (wombat, marsupial mole, aardvark, gcomyids, bathyergids, meline mustelids), aquatic (sea otter, seals, walrus) and arboreal mammals [koala, lemurs, indri, avahi (although less developed in those forms than in those mentioned above)]. Bears also have a large ischiatic tuberosity, probably related to their capacity for bipedality (occasionally and for short distances). Among Recent mammals the better developed ischiatic tuberosities are found in cursorial and highly fossorial mammals. In the other Recent mammals the development is generally not so spectacular. However, a reasonably well-developed ischiatic tuberosity is present in some arboreal nammals (phalangerids, Dendrolugus, sciurids, tupaiids). In other respects, it is noteworthy that, in the living didelphids, the ischiatic spine is generally more developed in the terrestrial and arborealterrestrial forms than in the strictly arboreal forms. Among fossil mammals, North American (arboreal) and Asiatic (terrestrial) multituherculates have a well-developed ischiatic tulerosity (respectively, Krause \& Jenkins 1983; KielanJaworowska \& Gambaryan 1994); it does not seem to be well-developed in Henkelotherium (Krebs 1991); it is weak hut salient in Gobicionodon (Jenkins \& Schaff 1988) and rounded in Megazostrodon (Jenkins \& Parrington 1976).

Therefore, the reduced size of the ischiatic spine of Movellestes indicates that it was cerrainly not cutsorial not fossorial. Its condition is not incomparible with arboreal life bur does not particularly reinforce this hyportesis.
The ischium of Mayolester is relatively long when compared to those of living didelphids (Table 7). However, its relative length is compatible with that observed in Cludosictis and Prothylacynus. As shown in table 7 the length of the ischium is quite variable in the same ecotype. For instance, fossorial mammals are considered to have a long ischium. This is obviously true for the superdigger Oryctexapus bur not for the teomyid or bathyergid modens. Leaping mammals also have gencrally long ischia (allactaga, kangarno). The bencfit of a long ischium is an increase of the lever arm of the extensor muscles of the hip and knee (biceps femoris, semimembranosus, semitendinosus, quadratus femoris) and therefore a more powerful extension of the hind limb essential in digging and leaping. In rupaiids and peramclids the ischia are similar in size to those of Mryulestes and Pucadelphys (Table 7). Tupaiids and peramelids arc excremely active and dynamic

Table 7. - Relative length of the ischium in various marsupials and placentals. Lis, length of the Ischlum; Li, total length of the innominate. All measurements are in millimeters.

	Lis	Lt	Lis/Lt
Mayulestes (MHNC 1249)	17.7	43.5	0.4
Cladosictis (YPM PU 15170)	37	101.5	0.36
Cladosictis (YPM PU 15702)	47	123	0.38
Prothylacynus (VPM PU 15700)	81 e	184 e	0.44
Pucadelphys MPFB Pal 6106)	10	24	0.41
Didelphis	22	75	0.29
Melachinus	12.5	40	0.31
Monodelphis	8	25	0.32
Marmosa	5	17.5	0.28
Caluromys	14.5	45	0.32
Phalanger	23	70	0.32
Sciurus	18	49	0.36
Tupala	11.5	30	0.4
Ailurus	31	93	0.33
Perameles	35	86	0.4
Orycteropus	150	260	0.57
Geomys	14	46	0.3
Bathyergus	20	47	0.42
Allactaga	23	45	0.51
Argyrolagus	14.5	38	0.38

Fig. 53. - Posterior view of the proximal third of the left femur in several marsupials: A, Mayulestes; B, Caluromys; C, Didelphis; D, Pucadelphys, E, Phalanger, F, Monodelphis; G, Metachirus, H, Borhyaena; I. Prothylacynus. Not to scale.
mammals and the morphology of the ischia of Mayulestes and Pucadelphys could simply be related to their agility (Perameles is also patrially fossorial). However, the fact that tamanduas have the same ratio "length of the ischium/rotal length of the pelvis" as squirrels indicates that the interpretation of this feature is perhaps not as simple as it appears at first.
Coxofemoral articulation. The relatively open acerabulum of the pelvis of Mayulestes indicates a good mobility of the hip to a degree comparable to that observed in the mose arboreal didelphids and in the Australian phalangerids. As in the latter the thickened and elevated anterior border of the acetahulum provides a good anterior buttressing system of the hip atriculation. The concave dorsal border (in dorsal view) of the acerabulum provides a greater amplitude of abduction (and in part of inversion) of the femur which allows a better opening of the legs and gives more stability in the case of an arboreal animal. On the contrary this condition would be a handicap in the case of a terrestrial cursorial animal where the movemenrs of the limbs tend to be parasagittal (Kappelman 1988). It is therefore probable that Mayulestes had a relatively more mobile articulacion of the hip and greater ability to have the legs widely spread than Cladosictis and

Prothylatynus. The condirion of Mayulestes was probably approaching that of arboreal marsupials such as didelphids and phalangerids. It is noteworthy that a similar structure of the acerabulum is found in Eozostrodom, interpreted as partially arboteal by Jenkins \& Parrington (1976). Among living forms it is present in tupaiids, in most arboreal didelphids, in phalangerids and petaurids. Kielan-Jaworowska \& Gambaryan (1994: 70) note that: "Elfiman (1929) stated that the acetabulum is open dotsally in arboteal didelphids and Pseutochirus". However, Elfiman (1929: 223) actually stated: "In arboreal forms, such as Didelphys (sic) and Pseudachirus, the cup is more opened allowing grearer freedom of movement of the head of the femur". Elfrman (1929: 225) also stared that "the acerabulum of Petaurordes is somewhat more open than that of Psendochirus" and "in Petanroides the acetabulum has a deeper notch dorsally than in Pseudochirus allowing extreme abduction of the femur during gliding." In fact the acerabulum is never torally open dorsally bur its dorsal border is more concave (in dorsal view) in arboreal forms (Caluromys, Caluromysiops) and terrestrial-arboreal formis (Didelphis) than in strictly terrestrial forms (Metachirus).
On the proximal extremity of the femur, the tro-

Fig. 54. - Distal view of the distal epiphysis of the tight femur in several marsupials: A, Caluromys; B, Didefphis; C, Philander, D, Monodetphis; E, Metachirus; F, Pucadelphys; G, Phalanger, H, Mayulestes; I, Borhyaena; J, Prothylacynus: K. Thylacinus. Abbreviations: Ic, lateral condyle; mc, medisl condyle. Nol to scale.
chanters are well-developed and expanded in the plane of the epiphysis. The size of the rrochanters of Mayulestes is similar to that observed in phalangerids, slightly greater than in the living didelphids and much more developed than in the Santa Cruz borhyaenoids. Among the living didephids, the trochanters ate more developed in the arboreal forms (Caluromys, Didelphis, Philander). In the tecrestrial forms (Metachirus, Monodelphis) their relative size varies. In Metachirus the greater trochanter is relatively high (pmbably in relation to the leaping ability) while in Monodelphis the greater trochanter is smaller than in other didelphids, although the lesser trochanter is relatively well-developed (Fig. 53). The development of the trochanters of Mayulestes corroborates the great mobility of the coxofemoral atticulation suggested by the morphology of the acetabulum.
The morphology of the coxofemoral articulation and the proximal extremity of the femur of Pucadelphys are very similar to those of Mayulestes excepr a slightly deeper acctabulum and a slightly lower grearer tochanter in the former. As in Mayulestes, the morphology of the acetabulum and proximal extremity of the femur of Pucadelphys suggests a well-developed mobility and power of the coxofemoral articulation and is consistent with some"arborealicy.
Femorotibial articulation. The distal epiphysis of the Femur of Mayulestes is anteroposteriorly longer than that of the Didelphidae and that of the Santa Cruz borhyaenoids (1ti. 54, Table 8). Caluromys, the most arboreal didelphid, las the most anteroposteriorly flattened distal epiphysis
of the femur while the most quadrate (in distal view) is found in Metachirus which is exclusively terrestrial. Berween these two poles are several intermediate types of totally or partially arboreal genera. Phalangerids also have an anteroposteriorly flattened distal epiphysis of the femur. A flatened distal epiphysis of the femur seems therefone related to arboreality in didelphids. However, the distal extremity of the femur is nor flattened in Tupaia, Scinrus, Nasua, Ailurus, although it is so in Potos. Therefore, an arboreal mode of life does not always implies the presence of a llartened distal epiphysis of the femur and the proportions of the distal epiphysis of the fenmur of Mayinlestes (which are closer to those of Metuchirus than to those of Caluromys) do not to argue against arboreal adaptarion, An anreroposreriorly elongated distal epiphysis of the femur indicates a greater amplitude of the movements of the knee which could be related to some running or leaping ability. Highly cursorial canids and thylacinids and saltatorial kangaroos or indris have a very triangular distal epiphysis of the femur. As a matter of fact the terrestrial Metachirus is a very active runner which shows good leaping ability and whose distal epiphysis of the femur is much longer anteroposteriorly than in the other living didelphids. Therefore, the proportions of the diszal epiptysis of the femur would be more informative on the way of locomotion than on the habits (arboreal $2 s$ terrestrial). The morphology obscrved in Mayulestes could possibly indicate a relatively more agile animal than the living didelphids, capable of some running and/or some bounding or leaping ability.

The distoproximal elevation of the femoral trochlea, its depth and its salient crests, when compared to the living didelphids, suggest more stress in the articulation which would be in agreement with more powerful and faster movements. During fast movement a deeper trochlea is necessary for a better guiding of the tendon of the vasti and rectus femoris (which inserts on the tibial tuberosity) and to prevent it from dislocation. Living didelphids and cuscuses which have a shallow femoral trochlea are relatively slow movers (although some didelphids are faster than others, i.e. Mctachirus). Extremely fast saltatory runners (squirrels and tree shrews), cursorial mammals, arboreal jumpers primates (Tarsius, galagos, lemurs, cheirogaleids indriids) and saltatorial rodents (dipodids, pedetids, some gerbillids) gencrally have a well-marked, proximodistally elongated femoral trochlea with relatively elevated crests. As mentioned by Tardicu (1983), a deep and long trochlea with elevated crests is fundamental in jumping primates and allows better retention of the patella in its articular position during extension. A well-marked trochlea seems to be related to fast movements. Slow dimbers such as lorisines primates have a wide and flat tochlea as seen in didelphids and phalangerids. However, the slow moving tamanduas and pangolins have a very deep trochlea with very elevated crests and the extremely fast squirrels and tree slorews do not have a more pronounced trochlea than the relatively slow moving lesser panda. Hence, the significance of the femoral rochlea is not clear. Within the borhyaenoids, Mayulestes resembles Cladosictis in having a well-marked trochlea but not as deep as in the fast moving jumping lemuriforms mentioned above. Borhyaena and Prothylacynus which have short and shallow femoral trochleae were certainly not as lighly cursorial as a thylacine. Therefore, when compared with living didelphids, the morphology of the trochlea of Mayulestes would indicate a more agile animal probably capable of some running and/or leaping, although, as mentioned above, this feature is not as reliable as is often believed.
The femoral trochlea of Mayulestes is strongly asymmetrical and the lateral lip is much more elevated than the medial one. Furthermore, the
larcral side of the trochlea extends more proximally on the anterior face of the diaphysis than the medial side. This is probably related to the size of the lateral condyle which is much larger than the medial ons. An intercsting comparison can be made with the femur of Tomondur, where the medial condyle is the largest and where the medial crest of the trochlea is much stronger and much more elevated than the lateral one. Thus, a relarion seems to exist bewween the size of one distal femoral condyle and the development of the corresponding crest of the femoral trochlea The elcuation of the lateral lip of the femoral trochlea corresponds to a necessity to prevent the joint from dislocation, more important on the lateral side of the joint than on the medial one. In Didelphis the average position of the femur when the animal is walking is close to horizontal, the knee being slightly lower than the hip (Jenkins 1971). In this position, a slight dorsovenural (anticlockwise for the left femur and clockwise for the right one) rotation of the femur on its axis will place the lateral lip of the trochlea below the medial lip. Such a position would imply the necessity for a stronger lateral lip of the trochlea in order to maintain the patella (or the vastus tendon, if there was no patella) in the trochlear groove. A dorsoventrally rotated

Table 8. - Proportions of the distal epiphysis of the lemur in various marsupials. L, length; W. width. All measurements are in millimeters.

	W	L	L/W
Mayulestes (MHNC 1249)	7.9	6 e	0.76
Cladosictis (YPM PU 15170)	21.5	17	0.79
Prothyacynus (YPM PU 15700)	42	31	0.74
Borhyaena (YPM PU 15701)	36	26.7	0.74
Thylacinus	32.5	30.5	0.93
Pucadelphys (YPFB Pal 6105)	4.8	3.3	0.68
Pucadelphys (YPFB Pal 6106 left)	4.8	3.6	0.75
Pucadelphys (YPFB Pal 6106 right)	4.9	3.7	0.75
Pucadelphys (YPFB Pal 6110)	4.5	3.2	0.71
Caluromys	9.5	5.5	0.58
Didelphis	13.7	9.5	0.69
Philander	10.3	7.2	0.7
Marmosa	2.5	1.9	0.76
Monodelphis	4.5	3.2	0.71
Metachirus	7	6	0.85
Phalanger	14.2	10.5	0.73

position of the femur will have the effect of adducting the crus. The urilicy of an adducted position of the crus is easily understandable in an arboreal (arboscansorial) animal which would elimb grasping the branches laterally (or dorsolaterally) as the living didelphids or tupaiids do (Jenkins 1974, 1984). Therefore, considering the position of the femur, the morphology of the femotal trochlea of Mayulestes can be interpreted as related to arboreality in the case of a didel. phid-like or tupaid-like climbing strategy (see below) but was probably associated to fast and powerful movements.
Another major feature of the tibiofemoral articulation of Mayulestes is the relative width of the distal condyles (Fig. 54, Table 9). As in didelphids and phalangerids, the medial condyle is much narrower than the lateral one, while the eontrary is observed in the Santa Cruz borhyacnoids. The didelphid condition varies according to the hatbis of the species. The moss significant difference in the width of the condyles is observed in Caluromys, the most arboreal didelphid. while in Metachirus, a terrestrial genus (Janson \& Emmons 1990), the medial condyle is wider and the lateral condyle narrower than in Caluromys but the former is still elearly narrower than the latter, Therefore, it seems that, among didelphids, the degree of arboreality is inversely proportional to the relative width of the medial condyle of the femur (i.e, the most arboreal, the narrowest). In Mayulestes, the relative size of the medial condyle (WM/WL 0.73) is close to that of Metuchirus (WM/WT 0.75). It is, however. much smaller than in the Santa Cru\% borhyaenoids (WM/WL varies from 0.95 to 1.2) and it is eloser to the most arboreal didelphid (Caluromys WM/WL 0.48) than to Borhyaena and Cladosictis. It is noteworthy that Eozostrodon, a genus interpreted as partially arboreal, has a lateral condyle of the femur which approximately twice the size of the medial condyle (Jenkins \& Parrington 1976). The distal condyles of the femur are generally subcqual in width in the essentially terrestrial Caenolestes and in the cursosaltarorial Permmeles. In Ptilodus, Styginys, ? Mesodma and? Eucosmodon, arboreal multituberculates from Noith America (Krause \& Jenkins 1983: 221, figs 19B, 20E,

TABLE 9.- Relative width of the distal femoral condyles in marsupials. WI, width of the lateral condyle; Wm , widith of the medial condyle. All measurements are in millimeters.

	WI	Wm	Wm/WI
Mayulestes (MHNC 1249)	3.13	2.3	0.73
Cladosictis (YM PU 15702)	10.2	11	1.07
Borhyena (YPM PU 15701)	1.5	17	1.2
Prolhylacynus (YPM PU 15700)	16	15.2	0.95
Caluromys	3.9	1.9	0.48
Philander	4.2	2.3	0.54
Didelphis	6.4	3.8	0.59
Marmosa	1.28	0.67	0.52
Phalanger	7.2	4.3	0.59
Monodelphis	1.8	1.5	0.83
Metachirus	2.9	2.2	0.75
Pucadelphys (YPFB Pal 6106)	2.4	1.8	0.75
Pucadelphys (YPFB Pal 6105)	2	1.5	0.75
Pucadelphys (YPFB Pal 6110)	2.1	1.6	0.76

21 E), the lateral condyle of the distal epiphysis is wider than the medial condyle, while in Chulsanbatar, a terrestrial multituberculate from the Gobi Desert (Kielan-Jaworowska \& Gambaryan 1994: fig. 17), buth condyles are subequal in width; in Kryplobaatar, another terrestrial multituberculate from the same region (Kielan-Jaworowska \& Gambaryan 1994: 12), the medial condyle is wider than the lateral one. It scems, therefore, that narrowing of the medial distal condyle of the femur could be related to sonve kind of arboreality. The precise function of that peculiar morphology has not been elucidated. However, it is noteworthy that it is present in several non-therian mammals [Eozosirodon, Erythrotheritu, Megazostrodon, Pirlodus, Stygimys, ? Mesodma, ?Eluasmadon, Henkelotherium (apparently, from Krebs 1991: fig. 11, pl. 3)]. In placental mammals, when distal condyles of the femur do not have the same width, the narrowest is always the lateral condyle. Therefore, the presence of a medial condyle conspicuously narrower than the medial one could represent a plesiomorphy. Mayulestes would thus retain the plesiomorphic condition within mammals.
The medial femoral condyle articulates, on the tibia, with a reniform, elongated and concave (almost grooved in Caluromys, Didelphis and

Phalanger) medial tibial facet which indicates anteropostcrior movements and some rotational ability of the femorotibial articulation (Jenkins \& Parrington 1976: 424). The lateral facet is wider, roughly quadrate and convex or flat and probably received the axis of rotation (lenkins \& Parrington 1976: 428), Cineradiographic studies have demonstrated the necessity for such a rotation during the representative phases of the walking step in Didelphis (Jenkins 1971). It is likely that rotation movenents of the knee are useful too in climbing, in order to help the inversion of the foot while grasping the branch on which the animal is moving (see below). However, Jenkins \& McLearn (1984: 216) noted that there is no significant contribution of femorotibial rotation to foot reversal. Although less pronounced than in Caluromys or Didelphis, the condition of Mayulestes clearly indicates some capacity for rotation of the knee. A similar femorotibial articulation is also found in Pucadelphys, although less developed than in most living didelphids.
On the proximal epiphysis of the tibia, the tibial tuberosity is not protruding anteriorly in Mayulestes, didelphids, phalangerids and Phascohartos. As a consequence, the epiphysis is flattened anteriorly and does not have the triangular shape observed in the Santa Cruz borhyaenoids and in highly specialised cursorial (thylacinids, canids, felids, ungulates) and terrestrial saltatorial (kangarous, rabbirs, pedecids) manmals (Fig. 55, Table 10). The development of the tibial tuberosity indicates the importance of traction exerted on the patellar ligament or (if there is no patella, is in didelphids) on the conjoined rendon of the vasti and rectus femoris. The action of these muscles is a powerful extension of the leg, an essential movernent in fast-tunning and jumping animals. On the contrary, rapidity and power of this novement is less important in the relatively slow-moving arborcal didelphids. In Metachirus, a terrestrial didelphid regarded by Szalay (1994) as subcursorial, the tibial tuberosity is more developed than in the highly arboreal Caluromys and the proximal epiphysis of the tibia is clearly triangular, while it is anteroposteriorly flatiened in Caluromys and Mayulestes. In fact, in didelphids there is a gradient of the shape

TABLE 10. - Comparison of the proportions of the proximal epiphysis of the tibia in marsupials. L, anteroposterior length: W, transverse width. All measurements are in millimeters.

	L	W	L/W
Mayulestes (MHNC 1249)	5.4	7.8	0.69
Cladosictis (YPMPU 15046)	19.1	19.7	0.97
Prothylacynus (YPM PU 15700)	36	39.5	0.91
Thylacinus	33.5	29	1.15
Caluromys	7.7	8.5	0.905
Didetphis	11.3	122	0.926
Metachirus	7.2	7.6	0.94
Monodelphis	3	3.9	0.77
Phalanger	9.2	10.3	0.89
Potos	14.8	18.5	0.8

of the proximal epiphysis of the tibia from reniform in Caluromys (the most arboreal didelphid) to dearly triangular in Metachirus (a terrestrial didelphid). In Didelphis and Philander, both ter-restrial-arboreal genera, the morphology of the proximal epiphysis is intermediate. In Dendrolagus, the arboreal kangaroo, the tibial ruberosity is much less developed than in the terrestrial macropodids. An anteroposteriorly flattened proximal epiphysis of the tibia is also found in several slow moving arboreal eutherians (Potos, Ailurus, Tamandua, Choloepus, Bradypus). It seems that the faster the animal is moving, the more triangular the epiphysis will be. For instance, the fast-moving squirrels have a more triangular epiphysis than Potos or Bradypus, but do not have the anterior protrusion of the tibial tuberosity observed in a cursosaltatorial rabbit. Therefore, the morphology of the proximal epiphysis of Mayulestes would indicate relatively slow movements, which contrasts with the relative agility suggested by the anatomy of other elements of the posteranial skeleton (pelvis). However, the interpretation of that feature is probably more complex since, in the extremely agile and Fast tupaiids, the proximal epiphysis of the tibia is relatively short anteroposteriorly while the distal epiphysis of the femur is not anteroposteriorly flatrened. Furthermore, the saltatorial lemuriforms (indris, galagos, lemurs) have an anteroposteriorly short proximal extremity of the tibia associated with an anteroposteriorly long distal epiphysis of the femur, with a

Fig. 55. - Proximal view of the right tibia in several marsupials: A. Mayulestes; B, Didelphis; C. Caluromys; D. Metachirus; E, Phalanger: F, Phascolarctos; G, Thylacinus; H, Prothylacynus. Not to scale.
deeply grooved trochlea. Therefore, the morphology of the proximal epiphysis of the tibia of Mayulestes, which is similar to that of the saltatorial lemuriforms mentioned above, could indicate some saltatorial ability. The combination of an anteroposterionly long distal femur with an anteroposteriorly short proximal tibia is also found in several tertestrial cercopithecids (macaque, baboon) which are very agile and, occasionally, good runners. The relative anteroposterior length of the distal epiphysis of the femur and the shortness of the proximal epiphysis and articular faces of the tibia would indicate that the tibial condyles can have an long trajeetory on the femoral condyles, which denotes capacity of a significanr amplitude of the movements of the knee as in saltatorial lemuriforms. It is therefore perhaps not incompatible with an agile and a relatively fast-moving animal, The morphology observed on the tibia of Prothylacynus and, to a lesser extent, Cladosictis, with a well-developed tibial tuberosity, would
denote some cursoriality and bounding ability. Diaphysis of the tibia. The well-marked characteristic sigmoid morphology of the shaft of the tibia (in anterior view) of Mayulestes (proximal thind to half, bowed laterally: distal half to two thirds, bowed medially) is found in all living didelphids and to a lesser extent in Dasyurus, Pataurus, Sminthopsis, Aerobotes, Pseudochivis and Dendrolagus, all arboreal or partially arboreal marsupial genern. A sigmoid tibia is also found in Caemolestes and Sarcophilus, both mainly terrestrial but capable of climbing and in some cases very agile (Novak \& Paradiso 1983). Eosostrodon, an arboreal form according to Jenkins \& Parrington (1976), also has a sigmoid tibia. The tibiae of the terrestrial Mongolian multituberculates Chulsambatar, Kirypubantar and Nemegtbatar are not sigmoid, but, straight, slightly bent laterally and strongly bent laterally respectively (Kielan-Jaworowska \& Gambaryan 1994), while those of the arboreal Narth American genera Ptilodus and ? Mesodma are sigmaid (Krause \& Jenkins 1983). The tibia of Henkelotherium, regarded as a partially arboreal enpantothere, is also slightly sigmoid (Krebs 1991). However, the tibiae of Pucudelphys, Phalanger and Phascolarctus, are straight. The tibia of cynodonts is strongly bent laterally but not sigmoid. The sigmoid morphology of the tibia is probably due to highly variable direction of the various tensions exerted on the bone in the case of an arboreal form. In cursorial mammals the direction of forces is probably more parallel to the main axis of the bone, whose straightness increases its mechanical resistance. Furthermore, the distribution of that feature among the multituberculate genera cited above would be indiative of a relation to some climbing ability: If this interpretation is correct, its absence in the koalas and phalangers is probably due to a different type of arboreal locomotion in these genera. It is noteworthy that the tibia of Cladosictis, Prothylacynus (probatly both with some cursorial ability, i.e. terrascansorial) and Thylacimus (definitely cursorial) is straight. The presence of a very sigmoid tibia in Mayulestes certainly confirms its lack of cursorial adaptation and probably reinforces the hypothesis of arboreality. Nevertheless, biomechanical studies are
needed to confirm the relationships of a sigmoid tibia to arboreality.
Astragalotibial articulation. The upper ankle joint is important in understanding locomotory habits. The astragalus of Mayulestes is unknown, however, the morphology of the astragalar facets of the tibia are highly informative. As noted above, the flattened malleolus is oriented at an angle of 135° with the uransverse axis of the tibial condyles. A consequence of this morphology is that an extension of the upper ankle joint will automatically result also in an inversion and the sole of the foot which will tend to face posteromedially. In Prothylacyus, Cladosictis and Thylacinus, since the malleolus is approximately parallel to the transverse axis of the tibial condyles, an extension of the foot will orientate the sole posteriorly: In didelphids, phalangerids and peraurids, the lateral tibioastragalar facer is helical and an extension of the foot 15 also accompanied by an inversion. Didelphids are known for having very prehensile hands and feer capable of efficient hallucial grasping (except, probably, the hind foot of Clironectes, the aquatic didelphid). The same is true in phalangerids and petaurids. Figure 13 of Jenkins \&r McLearn (1984) (which is based on photographs) well illustrates how Didelphis walks on a branch. The hands and feet rend to grasp the branch laterally or dorsolaterally which constrains the animal to have its hands and feet facing, at least partially, medially. Another very demonstrative figure is that of Novak \& Paradiso (1983: 24, top photograph) where the right hindfoot of a Caluromysiops standing on a branch, is extended and faces medially grasping the branch, the hallux being above and the other digits lateral (Novak \& Paradiso 1983: 13, 61, 64-66, 68, 70). I have made the same observation on Caluromys in captivity; in this genus grasping is also often achieved with digits I and II abouc the branch and digits III, IV and V, below. A similar grasping of the branch is also observed in Tupaia, although locomotion is much faster than in didelphids. Jenkins (1974:98) states that "when running at maxirnum speed on small branches Tupaia glis supinates each manus as much as 90°. As the contact of both hands is nearly synchronous, the effect is to grip the
branch berween the tight and left manus rather than to run on the top of "tt". The same is observed on the foot which is also abducted and inverted (Jenkins 1974) when walking on branches less than 2 cm in diameter. Considering the shape of a branch, the position of the hands and feet during didelphid and tupaid arboreal locomotion appears to be obvious. So are the modifications of the upper ankle joint movement and articulation. Therefore, the morphology of the distal extemity of the tibia of Mayulestes and the resulting inferted movemems of the ankle are in agreement with a didelphid type of arboreal locomotion, although morphologically different. In Intadelphys the malleolus is also at an angle of more than 90° with the transverse axis of the ribial condyles. Furthermore, in this genus, the lateral tibioastragalar facet is slightly helical, although less than in living didelphids. These features represent an indication of capacity of inverstion of the foot during extension of the lower ankle joint and ability of hindfoot reversal as is observed in living didelphids and many other arboreal marsupials and placen-tals (Jenkins 1974). The morphology of the astragalotibial articulation of Pucadelplys is therefore indicative of arboreality. Since the astragalus of Mayulestes is unknown, it is nor possible to confirm the reversal ability (Jenkins \& McLearn 1981) suggested by the astragalar facers of the tibin.
Calcaneum. The calcaneum of Mayulestes also provides important information on the movement of the lower ankle joim. The ectal and susrentacular facets strongly face medially, while in Sipalucyon they face mainly dorsally and slightly distally (Fig. 56). In living didelphids and plialangerids the ecaal and sustentacular facets also face mainly medially but to a lesser extent than in Mayulestes: the medial orientation is more pronounced in Caluromys and Mitrmasat than in Didelphis and Metashirus. The morphology observed in Sipalocyon is obviously relared to plantigrady. In that case, the astragalus directly receives the weight of the body through the tibioastragalar articulation with reduced shearing forces (tangential forces). The weight of the animal is transmitted to the calcaneum through the ectal and sustentacular facers. Therefore, the arti-

Fig. 56, - Distal view of line night calcaneum of several marsupials: A. Mayulestes: B, Sipalocyon: C, Caluromys; D, Didelphis; E, Marmosa: F. Pucadelphys; G. Metachirus; H. Phalanger. Abbrevialions: CaA , calcaneoastragalar facet; CaCu , calcaneo cuboid lacet; CaCud, dorsal calcaneocuboid facet, CaCup, posterior calcaneocuboid facet, CaFi, calcaneofibular lacet; Su, sustentacular facet. Not to scale.
culation musr be the most perpendicular as possible to the direction of the force and a dorsal orientation of the ectal facer of the calcaneum reduces the possibilities of medial sliding of astragalus in relation to the calcaneum. In didelphids, the astragalus is not positioned above the calcaneum bur on its medial side and the astragalocalcanear facets are oriented medially. As stated above, the articular surfaces must be as close
as possible to a position perpendicular to the direction of major forces in order to reduce the possibilities of dislocation of the joint. Thenefore, since the upper and lower ankle joints are grossly parallel, an increase of the medial orientation of the astragalocalcanear articulation will place the calcancum and the foot in an inverted position and the sole will face medially or ventromedially. The inversion of the foot will tend to mainain the aricular surface in a position as close as possible to a perpendicular position in relation to the main axis of the tibia (i.e. the orientation of the main foree excrted on the articulation). Such a position has been shown above to be basic in a didelphid-like arboreal locomotion. This of course does nor mean that the most arborcal didelphid cannot walk or even run on the ground, which Caluromys can do perfectly well. It only means thar these animals are scansorial and poorly adapted to long or/and fast runs. It is likely that Sipalneyon, although certainly not as well adapted to running as a thylacine, had better cursorial ability rhan any didelphid. The morphology of the lower ankle join of Mayulestes with a medially oriented ectal facet, is similar to that observed in the most arboreal didelphids and is therefore compatible with arboreal life. It certainly does not suggest major terrestrial cuesorial ability.
Table 11 illustrates the proportions of the tuber calcanei of several marsupials. Among the South American raxa, Mayulestics and Argyrolagus have a ruber calcanei longer than half of the toral length of the bone. A long ruber calcanci is obviously an advantage to increase the power of the extension of the ankle. This movement is useful to run (ungulates, canids) to dig (aardvarks, armadillos, bandicoots) and to jump (kangaroos, bandicoots, Argyralagus, jerboas, gerbils). It has been shown above that numerous features of Mayulestes indicate arhoreality, but nor cursoriality. Thesefore, it seems more likely that its long tuber calcaneì is related to some leaping ability or a leaping run as in tupaiids but probably less agile. Digging adaptations are improbable.
The tuber calcanei of Mayulestes is deep and nartow. As stated by Szalay (1994: 329, fig. 6.16), this morphology indicates strong plantar flexor musculature related to grasping and therefore

Table 11. - Comparison of the proportions of the calcaneum in various marsupials, Lit, total length; Litu, length of the tuber. All measurements are in millimeters.

	Lt	Ltu	Ltu/Lt
Mayulestes (MHNC 1249)	9.4	5.3	0.55
Sipalocyon (YPM PU 15154)	21	9	0.43
Didelphis	12	5.7	0.47
Pucadelphys (YPFB Pal 6106)	5.9	3	0.5
Caluromys	8.2	3.6	0.43
Metachins	10.7	5.3	0.5
Perameles	22	15	0.71
Argyrolagus	8.8	5.25	0.59

arboreality, A similar morphology is also found in Pucadelphys.
The proximodistally elongated ecral facet of the calcaneum of Mayulestes and its sustentacular facet. prolonged both proximally and distally, suggests entanced capacity of movement between the astragalus and calcanemm (Godinot \& Prasad 1994). The morphology of the lower ankle joint therefore suggests good rotational ability of the foot as is observed in several living arboreal mammals.
The large and distal peroneal process of the calcaneum of Mayulestes is similar to that of Deccanolestes hisplopi (Godinor \& Prasad 1994; Prasad \& Godinot 1994). According to these authors, this morphology is indicative of the relatively large size of the peronei longus and brevis and adductor digiti quinti, muscles involved in movement of eversion-inversion of the foot. As they mentioned it indicates "[...] frequent foot rotation movements necessary in an arboreal way of life" (Godinot \&x Prasad 1994: 80).

The sustentaculum tali is weaker in Mayulestes and in most living didelphids than in Sipalocyon. The large size of the sustentaculum in Sipalocyon is probably related to plantigrade terrestrial locomotion. The small size of the sustentaculum of Mayulestes indicates that it was much less terrestrial than Sipalocyon and is in agreement with the hyporhesis of the arboreal habits.
Metatarsus. As shown in table 12 the proportions of the MtIII of Mayulesies are slightly inferior to one third of that of the tibia. In Didelphis,

Caluromys and Marmosa, the proportion of the MtIII is between one fouth and one fifth the length of the tibia, in Phalanger it equals one fifth and in Philander it is less than one fifth. In Megazastrodon, the relative length of the medial metatarsals can be evaluated to one third of the length of the tibia. In Henkelotherium they are less than one thind of the length of the tibia and in Ptilodus they are slightly longer than the third of the tibia. In Pucadelphys the proportion is intermediate between one fourth and one chird. Considering the condition of living didelphids, it seems that the shorter MrIII are related to arboreal forms (Caluromys, Didelphis Philander and Marmasa) while the more terrestrial genera (Metachirus and Monodelphis) have relatively longer MtII. This idea has been implicinly expressed by Marshall \& Sigogncau-Russell (1995). Howevet, highly aborcal squirrels have a MrIII approximating one thitd of the length of the tibia. Megazastrodon, Henkulosherium and Ptiludus have much longer MitII than arboreal Recent didelphids and, nevettheless, have been interpreted as arboreal respectively by Jenkins \& Parrington (1976), Krause \&x Jenkins (1983) and Krehs (1991). Furthermore, the MrIII of Mayulestes is propottionally longer than that of Caluromys or Didelphis and it has been shown above that this genus bears scveral features in its postctanial anatomy which are compatible with

Table 12. - Relative length of the MtIII and the tibia in various mammals.LMtIII, lenglh of the Millif; Leti, length of the tibfa. All measurements are in millimiters.

	LMtIII	Lti	LMtII//Lti
Mayulestes (MHNC 1249)	13.3	40.5	0.328
Pucadelphys (YPFB Pal 6106)	7.1	24 e	0.29
Didelphis	18	83	0.21
Caluromys	8.2	37.6	0.21
Monodelphis	6.6	26.3	0.25
Marmosa	4.4	21	0.21
Phalanger 1	21.5	106	0.21
Metachirus	18	66	0.27
Philander	7.6	41	0.185
Henkelotherium	4	14	0.28
Ptilodus	11.8	28.8	0.41
Megazostrodon	6	18.8	0.32
Sciurus	22.5	66.5	0.3

arboreality. Therefore, relanively long metatarsals appear to be nor so closely related to terrestrial habits. They do not seem to be exclusive of arboreal habits but could just represent a plesiomorphic condition.

Conclusions on the postcrumial skeleton

The postcranial skeleron of Moyulestes has revealed several features that indicate a great similarity with the living didelphids or/and which are compatible with arboreality.
Characters related to arboreality are: (1) the prehensile tail (if acrually present in Mayulestes); (2) the anterior and distal development of the acromion; (3) the elevation of the spine of the scapula which indicates a powerful musculature necessary to the stability of the scapulohumeral articulation; (4) the grear mobility of the scapulohumeral articularion atrested by the circular shape ol the head, its proximal orientation and the relarively low tubercles; (S) the large size of the epicondyloid ridge and the distomedially protruding medial epicondyle which denore frequency and strength in the movements of the hand and fingers; (6) the grear length of the olecranon, strongly bent anteriorly and medially and which is excavated modially by a decp fossa for the flexor muscles of the hand and fingers: (7) the morphology of the McV which denotes good grasping ability; (8) the shallowness of the acetabulum and the excavation of its dorsal border which indicare an important mobility of the coxofemoral articulation; (9) the large siace of the trochanters of the femur and the medially bent greater trochanter which also indicate a great mobility of the hip; (10) the sigmoid morphology of the diaphysis of the thilia which indicates the great variety of Force directions exerted on the bone; (11) the morphology of the distal articular surface of the tibia which indicates that an extension of the foor was accompanied by inversion; (12) the narrow and proximodistally clongated cetal facer of the calcancum: (13) the laterally oriented ectal and sustentacular facers (i.e. the lower ankle joint) which indicares that the proximodistal resultant forces exerted on the joint will be oriented perpendicular to it (which allows the best stability of the joine and avoids its dislocation) only if the foot is inverted; (14) the
proximodistal length of the sustentacular facet which is indicative of good rotational abiliry of the foon; (15) the large size of the peroneal process which itndicates the large size of three museles involved in movements of eversioninversion: (16) the elevated and narrow tuber calanei which indicate strongy flexors of the foor and therefore good grasping ability.
Some fearures are not strictly related to arboreality but are compatible with this way of life and are informative on the locomorion of Mayulestes and indicate a relatively agile animal capable of bounding. They are: (1) the posterior position of the amiclinal vertebra (L4) which indicares that Marulestes was not cursorial; (2) the size of the neural spine and transverse processes of the posserior lumbar vertebrie which indicates a powerful epasial musculature; (3) the morphology and the position of the pre- and postzygapohyses of the last thoracic and lumbar vertebrae which denote in important mobility of the posterior vertebral column; (4) the long, ameriorly bene olecranon of the ulna, which indicates powerful extensions of the elbow (for instance for lcaping); (5) the everted iliac wing and the ventrolatcrally oriented anteroventral iliae spine which indicares a powerful epaxial musculature, importance of the flexion-extension movements of the column and mobility of the coxofemotal articulation; (6) the relative depth of the femoral trochlea and the elevation of ins crests which are related to agility of the animal; (7) the flatening of the proximal epiphysis of the ribia which is also found in some saltatorial lemariforms; (8) the relative lenget of the tuber calcanci which indicates leaping and/or running ability.
Furthermore, the elongation and the great dimensions of the acural spine of the axis are indicative of a robust nucchal musculature compatible with predaceous habits.

Thabirs of Mayulestes ferox

The question of arboreal v es terrestrial habies have been discussed by Jenkins \& Parrington (1976). The authors stared that he behavioural facror is essential since in arboreal groups some taxa are terrestrial because of any kind of preferences (feeding, physiological, ethological, etc.) even if
they can climb perfectly well. However, Jenkins (1974: 91) stated that "the evidence for locomotory behaviour in both captive and wild tree shrews indicares a moderate diversity of habitat preference. Clearly some tree shrew species are more arboreal than others, other species are more or less terrestrial. Perhaps the most significant fact is that all tree shrews species can climb and, at least occasionally, if not frequently, do so". The same is true for didelphids, where the rerrestrial genera Metachirus and Monodelphis are reported as good climbers (Novak \& Paradiso
1983). Hildebrand (1961: 249), who stated (referring ro the didelphid genera Metachirus, Monodelphis, Dhilinneler, Didelphis Marmosa) that "the nore arboreal animals differ from the semiarborcal and terrestrial animals in behavious pattern but not in morphology. Any of them could climb or walk well if it 'wanted' to". Contrary to Mildebrand statement, clear anatomical differences can be related to the arboreal; semiarboreal or terrestrial hahirs in didelphids. Detailed analysis of the postcranial skeleton reveals morphological differences for almost

Fig. 57. - Reconstruction of the skeleton of Mayulestes ferox (approx. $\times 0.7$). The elements of the skeletorn which are missing in the holotype are inspired by the recent arboreal genera Caluromys and Didelphis rather than the terrestrial Santa Cruz borhyaenoids. In this reconstruction, the tall is regarded as prehensite because of the morphology of $\mathrm{C8}$? and C ? and the number of caudal vertebrae is estimated to approach 30 (as in Caluromys where it varies from 30 to 35). The manus and pes are also regarded as prehensile, as in living didelphids and it is hypothesized that Mayulestes could have used (at least sometimes) an arboreal way of locomotion similar to that observed in the Recent arboreal didelphids.
every limb bone, some of which can be related to their habits. Furthermore, Grand (1983) has related the difference in limb proportion of Metachirus and Monodelphis to their way of locomotion. The most imporant fact is certainly, as stated by Jenkins (1974) for tree shrews, that in both groups (cupaiids and didelphids) all the species can climb well lexcept perhaps Metachirus (Acramentovizz pers comm.)]. This indicates that for both families arboreality is probably a plesiomorphy. Therefore, since changes in habits is mainly due to behaviour, it is probable that features of the postcranial skeleton of these mammals (whether arboreal, semiarboreal or terrestrial) actually represent arboreal way of life. Since behaviour is not observable in fossils it is obvious that an animal regarded as actually arboreal could be a terrestrial form with a skeleton bearing arboreal features (like Monodelphis or Tupaia tana). To conclude, another importanr remark of Jenkins (1974:91) is that the range of adaptive types is probably too subtle to be understood in terms of the gross categories of arborealism and terrestrialism. It is likely thar these two poles are separated by a great amount of intermediate stages representing a gradient from one eondition to the other.
In the following interpretation, if a clear position is taken concerning the way of life of Mayulestes, it is obvious that belavioural parameters, which could have notably modified the conclusions exposed below, could not be taken into account. Given the preceding discussions and lists of characters, it is highly probable that Mayulestes was at least partially arboreal. Its mode of locomotion could have approached that of tupaiids (although certainly not as fást and agile) weasles. or Melachirus (on the ground). The postcranial skeleton of Mayudestes shows ability for leaping or bounding, which is in agreement with prediceous habits. It is likely that Mayuleses was more agile than most living didelphids. Mayulestes was certainly nor exclusively arboreal as is Caluromys and it probably spent part of its time on the ground, perhaps under the pressure of some alimentary or ethological factors. With its short limbs and its short and blune snout (when compared to didelphids), Mayulestes prohably had an external aspect similar to that of the living wea-
sels (Fig, 57). Although it was certainly more arboreal (most of the weasels climb well but are not considered arboreal mammals), its agility was probably similar. Like weasels, Mayulestes was certainly an efficient predator which could have fed upon the abundant fauna of small insectivorous marsupials (Pucadelphys, Mizquedelphys, Incadelphys, Tinloralia, Peradectes, Kabsia, Juskbodelelphys), In size, these animals are similar to the small rodents that make an important part of the diet of the various species of Mustela. Weasels are known (Novak \& Paradiso 1983) to attack sometimes animals much larger than themselves (i, ε, adult hares). A further comparison of Mayulestes with Mustela therefore suggests that larger onnivorous animals like the small condylarths of Tiupampa (Tiuclaenus, Molinodus or Pucanodus) or caroloameghiniids such as Roberthoffitetteria could have also represented occasional prey for Mayalestes. Larger didetphids such as Andinodelphys, other predaceous marsupials like Allqokirus and the large (for the fauna) pantodont Alcidedorbignyat are less probable to have represented easy prey for Mayulestes. Among the non-mammalian fauna, the leptodactylid frog Estesius is very likely to have represented an important part of the dier of Mayulestes.

Evolution of the locomotion and habitat preferences of the borthyuenoids

The ather bothyaenoids known by partial skeleton ate the four genera of the middle Miocene Santa Cruz beds of Patagonia: Cladosictis, Sipalocyon, Protbylacynus and Borbyacha and the skeleton of Lyeopsis from the late Miocene of La Venta (Colombia; Marshall 1977a). They are much larger animals than Mayulestes and range in size from a small fox to a small beat. They were terrestcial and show some cursorial adaptauions, although they are not as highly adapted as thylacines or canids. Several featutes of their postcranial sheleton indicate an intermediate morphology between Niayulestes and thylacines. They are: (1) the anterior position of the anticlinal verrebra (on the last thoracics); (2) the straightness of the ulna, whose olectanon is long but not bent anteriorly (in Borlyyacna the diaphysis of the ulna is even bent posteriorly as in
all cursorial mammals); (3) the straightness of the femur, whose proximal epiphysis is not bent medially; (4) the straightness of the tibia; (5) the strong development of the tibial tuberosity; (6) the anteroposterior orientation of the medial malleolus of the tibia, which restricts the ankle movement to flexion-extension; (7) the reduction of the hallux.
However, some features clearly indicate that the Santa Cruz borhyenoids were not highly cursorial mammals. They are: (1) the development of the epicondyloid crest and medial epicondyle of the humerus, indicating a good mobility of the hand and fingers, which is generally not found in cursorial mamimals; (2) the absence of a posterior curvature of the femur, a feature present in thylacines and canids; (3) the weak (when compared to cursorial maminals) excavation of the femoral trochlea, which denotes slower and weaker movements of die knee (in other words, less. stress in the femorotibial articulation); (4) the semiplantigrady attested by the morphology of the tàrsus.
Among the Santa Cruz borhyaenoids, however, some differences can be noted in the anatomy of the limbs bones and, therefore, in morphofunctional interptetarion. In Protholatentus, the humerus has a felatively circular head as in Mayulestes, which indicates a greater mobility of the shoulder than in Cladosictis, where rhe humeral head is clearly elongated anteroposteriorly (Table 3) and matches the W/L ratio observed in Metachirus and Thylacinus, respectively, cursosaltatorial and cursorial marsupials (rhe humerus of Borhyaema is unknown). Nevercheless, because of the higher greater tuberosity of its humerus, the shoulder of Prothylacymus must have been less mobile than thar of Marulestes. In Prothylacynus the presence of a deep fossa on the posterior face of the lesser tuberosity and medial border of the head indicates a powerful accessory head of the triceps. This condition denotes important capacities of extension or retention to flexion of the elbow. The extremely developed entepicondylar crest of the humerus is related to good mobility of the manus (pronation-supination and flexionextension). The capitulum of the bumerus and the humeral articulation of the radius are ovalshaped (only slightly wider than long) which
indicates a fairly good capacity for pronationsupination movements. The radius of Prothylacynus bears along its shaft (as in Caluromys) a well-developed lateral crest which receives part of the origins of the pronator quadratus (on the posterior side) and abductor pollicis longus (on the anterior side). These muscles are generally attached on the interosseous membrane and the presence of a well-developed medial crest of the radius, which partially fills the interosseous space indicates much stronger muscles. The medial face of the olecranon of the ulna bears a deep medial fossa for the flexor of the manus and fingers. Therefore, the morphology of the elbow and forearm of Prothyldeynus indicates an enhanced mobility of the elbow, wrist and fingers.
In Borbyaena, the humerus is unknown, but the ulna is highly informative. The shaft of the bone is slightly recurved posteriorly and the apex of the olecramon extends posterodistally, whereas, in Prothylacynas the ulna is globally straight but slightly convex posteriorly, at the level of the radiohumeral articulation. In Cludosictis the ulna is inrermediate berween those of Borhyaerat and Prothylacynus. Contrary to the condition observed in Prorbylacynes, the flexor fossa of Borbyaena, on the medial face of the olecranon, is shallow as in thylacinids and canids. The beak of the olectanon protrudes anteriorly to a greater extent than in Prothyalcinus and the greater sigmoid cavity is less open than in Prothylatynus. This condition of the elbow articulation of Borbyaena indicates a greater stability of the joint than in Prothylacynus in order to tolerate a greatè stress (for instance when running). The humeral articulation of the radius in Borthytena (W/L ratio $=0.59$) and Cladosictis (W/L ratio $=$ 0.606) is much more transverse than in Prothylacynus (W / L ratio $=0.77$) and the lateral border of the shaft is rounded and bears no crest as is observed in Prothylacymus and Caluromys. This morphology is indicative of lesser mobility of the forearm, manus and fingers chan in Protbylacynus and is in agreement with better cursorial abilities. The condition of the humerus head of Clidosictis (much longer than wide) denotes a predominance of parasagittal movements of the forelimb. It is therefore possible that Borhyaena and Cladosictis were, at least par-
tially, cursorial or semicursorial. Prothylatynus has a forelimb compatible with agility and good capacity of grasping (possibly some climbing). However, the protruding tibial tuberosity of Prothylacyus also indicates a great power of the knee extensors compatible with some running (or/and hounding) ability (he vibia of Borhyoma is unknown and that of Chadosictis also has a strong tibial tuberosity). The loonmotory habits and other limblases of Prothylarynuts could grossly approach hose of living bears or large felids which have fairly mobile forelimbs (although very probably less than Prothylacynus) and which are capable of very fast running (especially felids). Irothylatymus could have had a forelimb slightly more agile than that of living bears (with reasonably gond climbing ability as bears) and could have been a slightly better runner than bears (bears have an anteroposteriorly shorter proximal epiphysis of the tibia) but certainly not as fast as a felid. It is very probatile that Borby aena was a better rumner and had lesser mobility of the forearm than Prothylacynus. Borhyacma and Cladosictis, seem to have initiated a cursorial adaptive trend whose extreme specialisation is observed (among marsupials) in the thylacine. Prothylacymus and Borbybem are similar in size and coexisted in the same environment of the Santa Cruz beds; hey should therefore have had different ceological nithes. As a matter of fact, the motphology of their limb bones certainly indicates different habits, although the determination of their mode of locomotion and other use of the forelimbs still remains poorly defined. The Santia Cruz borhyaenoids were efficient predators, although to various degrees (Sinclair 1906). Sone feamres indicate that they were more predators than scavengers. They are: (1) the very large and elongated morphology of the neural spine of the axis which denotes the strength of the neck musculature necessary when seizing a prey: (2) the eversion of the iliac wings which indicates a powerful epaxial musculature necessary for leaping onto prey; (3) the presence of large claws; (4) the presence of some running ability as indicated by the morphology of the knee.
Therefore, the large and medium-sized Miocene borhyaenoids were terrestrial animals (with per-
haps some arboreality in Prothylacymus) capable of relatively efficient running (to a greater extent in Borbyucna) but probably for a shont distance. Since they were predators, in order to seize prey such as the relatively fast-running notoungulates and litopterns, it is likely that they had to hunt lying in wait as ambush preditors, bounding on their prey at the appropriate moment in a way somewhat comparable to that of the living felids (this is especially true for Prodhy/acymes). Because of their relatively shore limbs (Sinclair 1906) and the fact that shey were semiplantigrade, it is probable that they were not capable of such a fast running as the living felids and, hence, were probably not as efficient.
Maynlestes, the oldest known borhyaenoid, was partially arboreal and is mode of locomotion was probably a moderately fast weasel- or rupaiid-like leaping run, Cicologically younger borhyaenoids from the Miocene are terestrial and probalaly seansorial with good ability for bounding. Borlyatend and Cludosictis were probably better rumners than Prothylacynus, which could have had some climbing ability.

Way of life of Lucadelphys

Marshall \& Sigogneau-Russell (1995) have suggested a terrestrial mode of life for Pucadelphys, a didelphoid from Tiupampra, However, his study has pointed out several fearures of Pucadelphys which indicate that it was, at least partially, arboreal. The features mentioned above are: (1) prehẹnsile tail (comtra Marshall \& Sigogneau-Russell 1995); (2) large acromion developed anteriorly and distally; (3) humeral head approximately as wide as long with relatively low tubercle denoting a good mohility of the shoulder; (4) very lange epicondyloid crest and medial epicandyle which indicate important capacity for flexion and extension of the hand; (5) olecranon of the ulna strongly bent anteriorly; (6) olecranon bent medially, with a deep medial fossa for the flexors of the manus and digit; (7) salicnt crest of the pronator quaketatus on the medial side of the distal extremity of the diaphysis of the ulna; (8) acetabulum relatively open with an excavated dorsal border (concave laterally), which indicate a good mobility of the coxofemoral articulation; (9) strong development of the femoral trochan-
ters which also indicates good mobility of the hip; (10) helical astragalar facet on the tibia, which allows inversion novernents of the foor: (11) large peroncal process of the calcancum which also indicates frequent inversion-eversion movements of the hoot; (12) elevated and narrow ruber calcanei which denotes strength of the digital flexors of the pes; (13) sustentacular facet medially oriented and distally extended; (14) capacity of hind font reversal as indicated in Marshall \& Sigogneau-Russell (1995, ligs 25A, 41,45 and 48) and as corroborated by the morphology of the astragalar trochlea observable after further preparation of specimen YPFB Pal 6106 ,
Considering the morphology of its lumbar vertebrae and ilium, Pucadelpbys was probably fairly agile and was probahly capable of leaping, as stated by Marshall \& Signgneau-Russell (1995). Digging ability suggested by these authors is possible although Pucadelpheys does not show any undoubted and exclusively fossorial adaptation such as finger modifications (stoutness of the metapodials, large claws). In fact, many non-fossorial manmals can dig (some dasyurids, many canids, lagomorphs, many non-hyperfossorial rodents, some viverrids, tenrecids. solenodontids, some soricids, some macroscelids). However, the association of arboreal adaptations to the lack of obvious fossorial adaptations seriously reduces the credibility of true fossorial habits in Pucadelphys. The specialisations of the pelvis of Pucadelphys mentioned by Marshall \& Sigogneau-Russell (1995: 149, 150) are also, as the authors mention, leaping adaptations. Furthernore, the aurhers compare lowalelphys with Perameles which they consider as a digging form. If it is true that lerameles often forages the ground in search for food, it is also an extromely agile runner and leaper which is also responsible for the morphology of its ilium. This wellknown adaptation of Perameles (Novak \mathbb{X} Paradiso 1983) is never mentioned by Marshall \&x Sigogneau-Russell (1995). Given the discussion ahove, it seems more probable that locomotion in Pucadelphys was a sort of leaping run similar to that of Metachirus, although probably not so agile. Cifelli et al. (1988) have shown that, in primitive tribosphenid mammals,
"terrestrial species are clearly distinguished from arboreal form on the hasis of their more heavily pitted and deeply striated crushing and shaaring surlaces respectively on molar crowns". "These microwears, in terrestrial forms is probably due to the dust, sand grains and carth which is ingested with aliments on the ground. It is likely that this condition should be greatly enhanced in the case of a fossorial species. However, since Pucadelphys was probably both arboreal and icrrestrial it is probable that the observation of wellmarked microwear fearures would not be of great significance. Considering the influence of cthological factors in arboreality u s icrestriality, it is not possible to determine if Pucadelphys was more or less terrestrial than arboreal. It is clear, however, that it had arboreal ability. It may have represented a stage close to the plesiomorphic condition.

Arboreality vs tervestriality

The interpretations presented here of the way of life of Mayulestes and Pacadelphys require the combined presence of a prehensile tail and a relative agility with reasonable running and leaping ability. However, as nentioned by Cartmill (1974: 51), no living atimal with a prehensile tail has an extremely agile arboreal focomotion except the acrobatic cehoids. Nevertheless, the combination of a prehensile tail with agile leaping and running is well known in Metachirw, a terrestrial didelphid. In this case, the prehensile tail of Metactinus is not used for climbing but probably represents a plesiomorphic feature, heritage of the arboreal ancestor of Metadiontrs. Therefore, a plausible interpretation could be that Mayulestes and Pucadelphys were both arboreal and terrestrial (which is highly probable) and that their agility was mainly used on the ground. Their arboreal locomotion was probably more cautious which would be in agreement with Cartmill's statement. Two other interpretations in agreement with Carmill"s statement could be considered: (1) Moyulestes was terrestrial but rccently evolved from an arborcal ancestor, thus retaining several arboreal features on its skeleton; the agility of Mayolestes would therefore be derived as is that ol Metachirus; (2) Mayulestes was mainly arboreal but is derived in
having acquired agilicy and lost a great part of the prehensility of its rail; Mayulestes would have had an arboreal locomotion close to that of squitrels or tree shrews. This interpretation implies that the plesiomotphic condition is a relatively slow locomotion with a prehensile tail (didelphid-like) which is far from being demonsrrated. In othet tespect, it is noteworthy that arboreal conditions in the carly Palaeocene do nor have to be similar to those in the present. The fact that some fearures of Mayulestes and Pucadelphys indicate agility combined with a prehensile tail is pethaps an evidence which contradicts Cartmil's statement. In fact, it is probable that the actual locomotor biology of Mayulestes was more eclectic than the four hypotheses proposed above. The arboreal features of Mayulestes indicate that it was vety probably capable of climbing, it ptobably had a ptehensile tail, it was probably partially terrescrial and it was relarively agile. How these four characteristics combine and their relative importance in the biology of Mayulestes is difficult, perhaps impossible, to establish so far. It seems reasonable to conclude that Mayulestes had good potential for arboreality, agility and prehensility of the tail; Moyzulestes is not an extremely detived arboreal mammal and certainly was also parrially terrestrial.
Therefore, analysis of the postctanial skeleron of Mayulester shows that the evolution of borhyaenoids is chatacterized by a loss of arboreality. This would indicate that this adaptation is a marsupial symplesiomorphy within the superfamily. Furthermore, the almost universal arboreality (of climbing ability) of the didelphoids (including Pucadelphys) also indicates that arboreality probably tepresents the plesiomorphic way of life of this group. The morphofunctionnal study of the Tiupampa marsupial skeletons therefore seems to corrobotate the conclusions of Szalay (1984: 254) that the stem marsupials were ptimarily arboreal manmals.

GENERAL CONCLUSIONS

Mayulestes ferox is the oldest known borhyaenoid represented by a skeleton and is the most primitive member of the superfamily. It is represented
by one of the two oldest known skeletons of Ametican marsupials. Dental morphology clearly indicates an animal engaged in the way of hypercarnivorous specialisation, although relatively discretely. The development of a prevallidpostvallum shear (and the related rransformations of the tooth morphology) is a common adaptation among meat-eating mammals and has appeared at least in six different groups of mammals and very probably several rimes within cach group. It is therefore a highly homoplastic apomorphy which has reduced phylogenetic value. One aponorphy of Mayulestes also found in the contemporaneous genus Allgokirus is the reduction of the entoconid, which is regarded here a synapomorphy of the family Mayulestidae. Because of the presence of a reduced entoconid, the Mayulestidae cannor be ancestral to the Iate Palaeocene genus Patene from Itaboraí which has a well-developed entoconid. On the orher hand, they constiture a good potential dental ancestor for cf. Nemolestes sp. from the same locality, a primicive Borhyaenidac which has lost irs entaconid and has a reduced meraconid. However, ctanial remains from this genus are needed to test this hypothesis.
The presence, in Mayulestes of five upper and four lower incisors ($1 / 43$, in other borhyaenoids) reinforces the fact that $15 / \mathrm{i} 4$ is the primitive marsupial incisor formula.
The skull of Mayulestes is highly informative on marsupial basicranial structure. Comparison with the other oldest-known marsupial skeleton, Pucadelphys andinus, reveals that the tympanic process of the alisphenoid and the alisphenoid hypotympanic sinuses, characteristic of marsupials, are very likely to have appeared several times within marsupial evolution. Therefore, théy should not be considered as diagnostic synapomorphics of the Mctatheria. In all bothyaenoids the squamosal participares in the formation of the alisphenoid sinus. This chatacter state, which is absent from all the other marsupials represents one of the main synapomotphies of the superfamily. Most of the other cránial fearutes of Mayulestes are therian, tribosphenidan, or marsupial plesiomorphies.
The posteranial skeleron of Maytilestes clearly indicares an animal that was at least partially
arboreal, Many features are shared with the didelphoids (including Ptucadelplys) which are primirively arboreal (secondarily terrestrial for some forms). Pucudectplyss is regarded here as partially arboreal contrary to former interpretations (Marshall \& Sigogneau-Russell 1995). Among the many arboreal features borne by Mayulestes some are shared with other arboreal therian and non-therian mammals. A medial distal condyle of the femur that is natrower than the lateral condyle is found in Mayulesres, Pucadelphys, the living didelphids, phalangerids, Dendiolagus, Eazostrodon, Mcgazosppodon, Eryphrotherium, arboreal multituberculates (Stygimys, Ptilodus, ? Eucosmaton, ? Mesodma) and Ilenkelotherium. A sigmoid thina is fonnd in Muydertes, in all living didelphids, in phalangerids (less marked than in didelphids), in Euzostrodon, in arboreal mulrituberculates (Ptiludus, ? Mesodma) and in Henkelotheriam. Considering their distribution these two features are probably plesiomorphic, However, it is noteworthy that they are present only in living arhoreal marsupials (although nor in all of them) or in fossil manmals inrerpreted as arboreal. They are absent in the Asiann multitubcrculates, regarded as terrestrial by KielanJaworowska \& Gambatian (1994). Therefore, these features are very probably relared to some kind of arboreality. If these hypotheses are correct, they would indicate that some atboreal features are plesiomotphic for mammals. This docs not imply that atboreality is a plesiomorphic feature for mammals as hypothesized by Mathew (1904). Furthermore, as clearly stated by Jenkins \& Parrington (1976) arboreality is a very relative state since the influence of behaviour may greatly influence the habirs of mammals. Moreover, as stated by Jenkins \& Parrington (1976: 425, 426) the question of arboreal ν s terrestrial specialisation in diminutive manumals is probably invalid since at "ground level, obstacles that requires climbing are common and vegetation provides a continuum of substrate possibilities between the terrestrial and the arboreal". It is also noteworthy that several Late Cretaceous mammals from Mongolia (eutherians and multituberculates) have been regarded as terrestrial (Kielan-Jaworowska 1977, 1978; KielanJaworowska \& Gambaryan 1994); undoubredly
this is related to the very arid environment in which they were living. Although the study of the postcranial morphology of Mayzelestes and Pucdudelphys does not confirn Mathews (1904) theory, it does not contradict it and certainly reinforces the hyporhesis of the ancestral arborcaliry of marsupials.

Acknowledgements

Research in the field and in Museums (American Museum of Natural History, New York; US National Museum of Natural History, Washington D. C.; Peabody Museum, New Haven) was funded by the Institut Français d'Erudes Andines (IFEA, Lima, Peru). The author is a member of the Centre National de la Recherche Scientifique (CNRS, Paris, France) and part of the research was underraken with funds of this instirution and the Muséum national d'Histoire naturclle (MN1IN, Paris, France). The Field expedirion where the holotype of Mayutstes was found (1992) was carried out in collaborarion with the Asociación Boliviana de Palcontologha and the Fundación para las Ciencias (Cochabamba, Bolivia). Special thänks are due ro R. Céspedes Paz, J. Jacay Haraché and R. Suarez Soruco for their collaboration and logistic support. The holotype of Mayulestes ferox is property of the Museo de Historia Natural de Cochabamba (Bolivia); the specimens of Pucadelphys andinus are propertey of the Centro de Tecnología Petrolera de Yacimientos Petroliferos Fiscales de Bolivia (YPFB, Santa Cruz, Bolivia), J. Cuisin, M. Tranier, F. Renoult (MNHN, Paris), R, Emry (US NMNH, Washington D. C.), M. Novacek (AMNH, New York) and M. A. Tirner (Peabody Museum, Now Haven) gave access to collection under their care. Special thanks are due to C . Tardieu (CNRS, Paris, France) who kindly spent many hours with me discussing marsupial functional anatomy. M. Atratrentovitz (CNRS, Brunoy, France), P. Charles-Dominique (MNHN, Brunoy, France) and M.-L. Guillemain (MNHN, Brunoy, France) provided very useful uupublished data on Recent didelphids biology and gave access to their Caluromys husbandry. Review by R. L. Cifelli and F. S. Szalay allowed
considerable improvement of the manuscript. This work has benefited from much fruitful discussions with R. Cifelli, L. Ginshurg, E. Jaillard, M. McKenna, M. Novacek, B. Senut, D. Sigogneau-Russell, E. Sargis. F. Szalay. E. Sargis kindly helped in measuring the teeth of Mayulestes ar the Analyrical Microscopy and Imaging Center in Anthropology (Hunter College, CUNY), Phorographs are by D. Serrette (URA 12 CNRS): drawings are by F. Pilard (MNHN) except figure 45 which is by M. Parrish (US NMNH, Washington D. C.).

REFERENCES

Ameghine F. 1894, - Énumération synoptique des espèces de mammiferes fossibes des formations éocènes de Baragonic. Roletion de la Academia de Ciendids de Córeduxa 13: 259-452: Ameghino Obras completas 10: 594-863.
Archer M. 1976. - The basicranial region of marsupicarrivores (Marsupialia), rclationships of carnivorous marsupials and affinities of the insecrivorous marsupial peramelids. Zuological Journal of the Lintiedn Socicty of London 59: 217-322.

- 1978. - The nature of the molar-premolar boundary in marsupials and reinterpretation of the homolowy of marsupial checkteeth. Aemoirs of the Queensland Musetum 18: 157-164.
- 1982. - A peview of Miocene thylacinids (Thylacinidac. Marsupialiah, the phylogenetic position of the Thylacinidae and the problem of apriorisms in character analysis: 445-476. in Archer M. (ed.), Carnivarors mintrupials. Royal Society of New South Wases, Sydncy.
Barnett ($\therefore 11$. Napier J. R. 1953. - The form and mobility of the fitula in metatherian mammals. Journal of Hnattomy 55: 207-213.
Berkovits B. K. B. 1978. - Tooth ontogeny in Didelphis uirstinumu. Australian Journal of Zoology 26: 61-68.
Bonaparte J. T. \& Motalcs J. 1997, - Un primirivo Notonychopidae (? Litopterma) del Paleoceno Inferior de Punta Peligro. Chuhut, Argentina. Estudion graligicos 53 (5-6): 263-274.
Bonaparte J. \& ${ }^{2}$ Rougie G. 1987. - Mamiferos del Cretácico Jeferior de Patagonia. IV Congreso Latinommaricano de Palpontologia, Santa Crus, Bolivia 1: 343-359.
Bonaparte J. F., Van Valen L.. M. \& Kramartz A. 1993. - La fauna local de Punta Peligro, Paleoceno inferior, de la Provincia del Chubu, Patagonia, Argentina. Evolutiondy monographs 14: 1-61.

Bown T. M.. Krause M., Wing S. J., Fleagle J. G. L., Tiffney R. H., Simons E. L. \& Vondra C. F. 1982. - The Fayum primate forest revisited. Joumal of human crobution 11:603-632.
Carmill M. 1974. - Pads and claws in arboreal locomorion: 45-83. in Jenkins F. A. (ed.), Trimate Loconnotion. Academic I'ress, New York.
Cifelli R. I. ispor, - Cretaceons mammals of southern Urah. 1. Marsupials From the Kaiparowits Formation (Judithian), fournal uf Veriebrate Pateontology to (3): 295-319.

- 1990b, - Crecaccous mammals from southern Utah. II. Marupials and marsupial-like nammals from the Wahweap Formation (early Campanian). Jourstal of Vertebrate Fatematalgy 10 (3): 320-331.
- 1993.. -Early Cretaceous mammal frum North America and the evolucion of marsupial dental characters. Procedings of the Natrional Academy of Sciences USA 90: 9413-9416.
- 1993b. - Theria of metarherian-eurherian grade and the origir of marsupials: Volume 1: 205-215, in Sralay F. S., Novacek M. J. \& McKenna M. C. (eds), Mimmal Phylogeny. Springer-Verlag, New York.
Cifelli R. L. \& Eaton J. G. 1487. - Marsupial from the earliest Late Cretaccous of Western US', Nature 325: 520-522.
Cifelli R. L. \& Buizon C. de 1997 - Dentition and jas of Kukopellia juddi, a primitive marsupial or near-marsupial from the medial Cretaceons of Unah. Jowmal of Mammalian Fivolution 4 (in press).
Cifelli R. L. \& Muizon C. de 1998 - Marsupial mammals from the Upper Creraceous Noth Horn Formation, central Utah. /eurnat of Paleontology 69 (in press).
Cifelli R. L., Sherburn E. W. \& Larson E. M. 1988. - Deveal wear and hobitat preference in primitive tribosphenid mammals. foumal of Vertebrate Palrontology 12 (3) Suppl.: 12A.
Ciochon R. l.. \& Corruchini R. S. 1977. - The coraconcromial ligament and projection index in man and orther anthropoid primates. Journal of Anatomy 124: 627-632.
Clemens (W. A. 1966. - Fossil mammals of the type Lance Formation, Wyoming. Part II. Marsupialia. University of California Piblications in Gealogical Scieners 62: 1.122.
Corruchini R. S. \& Ciochon R. 1. $1476 .-$ Morphomerric affimitics of the haman shoulder. Americin Jourval of Physia An Anthopology 45?: 19-38.
Cones E. 1872. - The osteology and myology of Didelphys upginiam. Memoirs of the Boston Society of Nattral History 2: 41-154.
Crochet]. K. 1980 . - Les Marsupiaux du Iertiaire d'Eumpe, Fondation Singet-Polignac, Paris, 279 p.
Crompron A. W. \& Jenkins F. A. 1979. - Origin of manmals, Mesuzoir Matmals. 59-73, in Lillegraven J. A., Kielan-Jaworowska Z. \& Clemens W. A. (eds), The First Two-Thirds of

Mammalian History. University of California Press, Berkeley.
Cromptori A. W. © Luo 2. 1993. - Relationships of early mammals, Sinoconodon, Morydnurodon wehleri and Dinnetherium: 30-44, in: Szalay F. S., Novacck M. 1: \& McKenna M. C. (eds) Mammal Phylugeny. Atsozoic differnsiation, Multitubercorlates, Monorremes, early Therians and Marsupials. Springer-Verlag. New York.
Dashzeveg D. \& Kielan-lawormeka Z. 1984. - The lower jaw of an aegialodonid mammal from the Early Cretacents of Mongolia. Zoologiral Jommat of the Linneran Surisiy of Londom in2: 217-227.
Dom R., Fisher B. L. '2 Martin G. F. 1970. - The venous system of the head and neek of the opossum (Didelphis uigeinima). Journal uf Morphotogy 132: 487-496.
Eaton]. G. 1993. - Therian mammaly from the Cenomanian (Upper Creaceous) Dakota Formarion, sourhwestern Urah. Journal of Vertebrate Paleontolugy 13 (1): 105-124.
Elfman H. O. 1929. - Funcrional adaptations of the pelvis in marsupials. Bulletin of the American Museum of Nathral History 58: 189-232.
Evans H. F. \& Christensen C. C. 1979. - Anatomy of the dog: Y4t. Saunders Philadelphia,
Fleagle J. G., Simons L. L. \& Conroy G. C. 1975. Ape limb bone from the Oligocenc of Egype, Science 189:135-137.
Fux R. C. 1975. - Molar structure and function in Farly Cretaceous mammal Pappotheritun: evolutionary implication for Mesozoic Therii. Canadian Journal of Earth Seientes 12: 412-4イ2.

- 1981. - Mammals from the Upper Cretaceous Oldman Formation, Alberta. V. Liodelphis Matthew and the evolution of the Sragodontidae (Marsupialia). Canadiun Jourmal of Earth Sciences 18 (2): 350-365.
- 1987. - Pahatontology and the carly evolution of marsupials: 161-169, in Archer M, (ed.), Possums and Oposstms. Surrey Beatty and Sons and the Royal Sociery of New South Wakes, Chipping Norton. New South Wales.
Fox R. C. \& Naylor B. (3. 1986. - A new species of Didetphordon Marsh (Marsupialia) from the Upper Cretaceous of Alberta, Canada: Palacobiology and Phylogeny, Neues haturbit fïr Geologie tend Palïantologie, Abhandlougen 172:357-360.
- 1995. - The relationthips of the Sragodoncidae, l'rimitive Noth American Late Cotaceous manmals: 247-250, in Sun A \& Wang Y' (eds), Sixth symposimm on Mesoznic scosystem and biotas. Short paper. China Ocean Press.
Gambaryan P. 1974. - Ifou mammals run: anatamical aduptutions. Halsted Press, Jerusalem, XI + 367 p.
Gayer M.. Marshall L. G. \& Sempere T. 1992. The Mesozoic and Palacocene vertebrates of Bolivia and theit stratigraphic context: a review.

Revista Toturat de YPFB, Santia Cruz 12 (3-4, dic. 1991): 393-433.

Gidley J. W. 1919. - Significance of divergence of the firse digit in the primitive mammalian foot. Journint of the Washingron Acadeny of Science 9 (10): 273-281.

Godinor M. \& Prasad G. V. R. 1994. - litrst Gretaccous arboreal eurherians discoveted in India. Naturuissenchafien 81: 79-81.
Goodrich E. S. 1958. - Studies on the structure and Development of Vertebmes. Dover, London, 8.37 p;
Grand T. 1. 1983. - Body weight: iss relationship to crsue composinion, segrnemal distriburion of mass and notor function. III. The Didelphidas of lirench Guyans. Australian Jourmal of Zoology 31: $299-312$
Gregory W. K. 1910. - The orders of mammals. Bullitin of the American Museum of Natural Histary 27: 1-524.

- 1920. - Studies in comparative myology and osteology: N IV. A review of the evolution of the lacrimal bone of vattebtates with special references to that of mamurals, Bullewin of the American Mreserun of Naturat Histopy 42 (2): 95-263.
Hay B. U, \& Van Eysinga F. W. B. 199 年Geotogicot dime wable Fonath revised, enlayged and uphatededition Elsevier Sicience, Amsterdam.
Hershknvitz f. 1982. - The staggered marsupial lower third incisor (13). Gebobios, Mémane Special 6: 191-200
Hildchrand M. 1961. - Body proportions of didelplist (and some other) marsupials, with emphasis on variahility. Americun Journal of Amatomy 109: 239-249.
Hopson J. A. \& Rongier G. W. 1993. - Braincase structure in the oldest skull of a therian mammal: inplications for mammalian systematic and cranial evolurion. American formal of Science 293: $26 \pi-299$.
Hualey T. J1. 1880. - On the applitation of the laws of evolution to the arrangement of the Vermbrata and more particulaty to the Manmalia. Proneedings of ibe Zoologital Siaciery of Lurdon 1880: $649-662$.
Inmam V. T., Samiker J. R., De C. M \& Abotr I.. C. 1944. - Ohservations on the function of the shoulder foint. Jouna of Bone Joint Sutrery 26: 1-30.
Jaillard E., Capperta H.. Fllenberger P., Feist M., Grambast-Fessard N., Leftanc J.-P. \&e Sigé B. 1993. - Sedimentology, paleontology, hiostratigtaphy and cotelation of the 1 Late Cretaceous Vilquectico Group of southern Peru. Critatous Research 14: 623-661.
Janson C. A. \& Emons L. H. 1990.- Ecological structure of the nonflying mammal community at Cocha Cashu biological scation, Manu National Park, Ieru: 314-338, im Gentry A. H. (ed.), Far Neatropical Rain. Forest. Yale University Press, New Haven.

Jenkins F. A. 1971. - Limb posture and locomotion in the Virsinia opossum (Didelphis marsupialis) and in other non-cursorial mammals. Journal of Zoology, London 165:303-315,

- 1974. - Tree shrew locomotion and primate arborealism: 85-115, in Jenkins F. A. (ed.), Primabe Lecmmotion Academic Press, New York.
Jenkins I: A. \& Melearn D. 1984. - Mechanisms of hind foor reversal in climbing mammals. Journal of Morphalugy is2 (2): 197-219.
Jenkins 1. A. \& Parringen F. R. 1976. - The postcranial skeletons of the Triassic mammals Eozostradon, Megsiontrodon and Erytbrotherium. Philosupharial Trumsactions of the Royal Soriety of Londor B 273: 387.431.
Jenkins l. A. \& Schaff C. R., 1988. - The Early Cretacenus mammal Gobiconodon (Mammalia, Triconodonfia) from the Cloverly Furmation in Montana. Jourrul if' Wertebrate Patcontology 8 (1): 1-24.
Jenkins F. A. \& Weils W. A., 1979. - The functional anatomy of the shoulder in the Virginia opossum (Didelphis wirginiana). Journal of Zoology London 188:379-410.
Julien-Laferrièré D, 1991. - Organisation du peuplement de marsupiaux en Guyane française. Revue d'Écologit (Terve Vie) 46: 125-144.
Jollie M. 1962. - Chordate Morpholog\%. Reinhold Publishing Corporation, New York.
Kappelman J. 1988. - Morphology and locomotor adaptation of the bovid femur in relation to habitat. Journal of Morphology 198: 119-130.
Kermack K. A. Mussert F. \& Rigncy H. W. 1981. The skull of Morgandizodon Znologizal Journal of the Linneatn Sociery of London 71: 1-158,
Kielan-Jaworowska 之. 1975. - Evolution of the therian mammals in the Late Crecaceous of Asia. Part 1. Deltatherididae. Results of the Polish-Mongolian Paloontological Expeditions. Part V1. Palacontoloxia Polonica 33: 103-132.
- 1977. - Evolution of the therian mammals in the Late Cretaceous of' Asia. Part II. Postcranial skeleton in Kemmateses and Asioryotes, Palatontologia Polonion 37: 65-83.
- 1978. - Evolution nf the therian mammals in the Late Cretacenus of Asia. Part III. Posrcranial skeleton in Zalambdalestidae. Palazoutologia Polonica 38: 3-41.
- 1981. - Evolution of the therian mammals in the Late Cretaceous of Asia. Part IV. Skull structure of Kennalestes and Asioryctes. Results of the Polish-Mongolian Pialcomological Expeditions. Patt IX'. Palneoneologia Polonict 42: 25-78.
Kielan-Jaworowska Z. \&C Gambaryan P. P. 1994. Postcranial anaromy and habits of Asian multituberculate mammals. Fossils and Strata 36: 1-92.
Kielan-Jaworowskia Z. \& Ncssov L. A. 1990. - On the metatherian nature of the Detatheroida, a sis-ter-group of the Marsupialia. Lethaia 23: 1-10.

Kielan-Jaworowska Z. © Trofimov B. A. 1980. Cranial morphology of the Cretaceous eutherian Barunlestes. Acta Palaeontologica Polonica 25 (2): 167-185.
Kielan-laworowska \%., Bown 1. M. \& Lillegraven J. A, 1979, - Eutheria: 221-258, in Lillegraven J. A., Kiclan-jaworowska Z, \& Clemens W. A. (eds), Mesozoic Mammats: The First Two-Thirds of Mammatian History. University of California Press, Berkeley.
Kiclan-Jaworowska Z., Presley R. \& Poplin C. 1986. -The eranial vascular system in tacniolabidoid nultituberculare mammals. Philosophical Tramsactions of the Royal Saciety of London 313 (1164): 525-602.

Kielan-Jaworowska Z., Crompton A. W. \& Jenkins F. A. 1987. - The origin of egg-laying marnmeals. Niture 326: 871-873.
Krause D. W. \& lenkins E. A. 1983. - The postcranial skeleton of North American multituberculares. Bulletion of the Muscum of Comparative Zoology, Harvand 150 (4): 199-246.
Krebbs 13. 1991. - Das Skelett von Henkelotherium guimarotat gen. et sp, nov. (Eupantotheria, Manimatia) aus dem Oberen Juta von Portugal.
 133. 110 p .

Larson S. G. 1993. - functional morphology of the shoulder in primates: 45-69, in: Gcbo D. (ed.), Postcranial adaptation in non-Juman primattes. Nothern Lllinois University Ptess.
Larson S. G. \& Stem J. T. 1989: - The tule of the supraspinatus in the quadrupedal locomotion of ververs (cercopitbectus nathiops): implications for interpretation of humeral morphology. Ameritan Journal of Pbysial Antbropology 79: 369-377.
Larson S. G. \& Stern J. 'T. 1992. - Further evidence for the tole of supraspinatus in cuadrupedal monkeys. Ameriturn Jommal of Dhystial Antimpology 87: 359-363.
Lillegraven J. A. \& Krusat G. 1991. - Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta, Mammalia) from the late Jutassic of Portugal and its implications to the evolution of mammalian characters. University of Wyoming Comtribution to Gealogy 28: 39-138.
Luckett P. 1993. - An ontogenetic assessment of dental homologies in therian nammals: 182-204, in Szalay F. S. Novacek M. J. \& McKenna M. C. (eds), Ninmmat Phylugeny, Mesozoic Differenuation, Maltituberruhases, Early Therians and Marsupials. Springer-Verlag, New fiork.
Mckenna M. C. 1975. - Toward a phylogenetic classification of the Mammalia: 21-46, in Lucketr W. P. \& Szalay F. S. (eds), Phylogeny of the Primates. Plenum Press. New York.
McManus J. J. 1970. - Behavior of caprive opossum, Didelphis marsupiulis uirginianus. The American Naturalist 84: 144-169.

MacIntyre G. T. 1967. - Foramen pseudovale and quasi mammals, Evolution 21: 834-841.

- 1972. - The trisulcate petrosal pattern of mammals: 275-303, in Dobzhansky T., Hecht M. K. \& Steere W. C. (eds), Evolutionary Binlogy Volume 6. Appleton-Cenrury-Crofts, New York.
Marshall L. G. 1976. - Evolution of the Thylacosmilidae, extinct saber-tooth marsupials of South America. Palenbios 23: 1-31.

1977. - A new species of Lycopsis (Borhyacnidac: Marsupialia) from the La Venta fauna (late Miocenc) of Colombia, South America. Journal of Paleouthlogy 51: 633-642.

- 1977b. - Cladistic analysis of borhyaenoid, dasyuroid, didelphoid and thylacinid (Marsupialia: Mammalia) affinity. Systematic Zoology 26 : 410-425.
- 1978. - Evolution of the Borhyaenidae, extinct South Amerioan predaceous marsupials. Unibersity of California Publications in Geological Sciences 117: 1-89.
- 1979a. - Review of the Prothylacyninae, an extinct subfamily of South American "dog-like" marsupials. Filddiana Geology, new series 3: 1-50.
- 1979b. - Evolution of meratherian and eutherian (mammalian) characters: a review based on cladistic methodology. Zondogical journal of the Linnean Society of Lomfon 66: 369-410.
- 1981. - Review of the Hathlyacynimae, an extinct subfamily of Sourh American "dog-like" marsupials. Fieldhna Corology n.s. 7: 1-120.
Marshall L. G. \&e Kielan-Jawouowsk Z. 1992. Relationships of the dog-like marsupials, deltatheroidans and carly tribosphenic mammals. Lethatia 25: 361-374.
Marshall L. G. \& Muizon C. de 1988. - The dawn of the age of manmmals in Soutl, America. National Geographic Resedrch 4 (1): 23-55.
- 1995. - The skull, in Muizon C. de (ed.), Pucadelphys andinus (Marsupialia, Mammalia) from the early Palacocene of Bolivia, Part 11 , Mémoires du Muséum national d'Histoire naturelle 165:21-90.
Marshall L. G. \& Sigogneau-Russell D. 1995. Posteranial skeleton, in Muizon C. de (ed.), Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia. Part III, Ménoires du Muserun national d'Histoire naturelle 165:91-164.
Marshall L. G., Case J. A. \& Woodburne M. O. 1990. - Phylogenetic relationships of the farnilies of marsupials. Current Mantmatogy 2: 433-502.
Marshall L. G, Muiaon C. de \& SigogneauRussell D. 1995. - The tocalify of Tiupampa: age, taphonomy and mammalian fauna, in Muizon C. de (ed.), Pucadelphes andinus (Marsupialia, Mammalia) from the early Balacocene of Bolivia, l'ant 1, Mémoires du Muséum national d'Histoire naturelle 165: 11-20.

Marshall L. G., Muizon C. de, Gayet M.. Lavenu A. \& Sigé 13. 1985. - The "Rosetta Stonc" for mammalian evolution in South America. National Geographir Research 1 (2): 274-288.
Marshall L. G., Sempere T. \& Butler R. F. 1997 Chronostratigraphy of the mammal-hearing Padacocene of South America. Journal of South Amcrican Earth Sciences 10: 49-70.
Manhew W. D. 1904. - The arhoreal ancestry of the Mammalia. American Nanuralist 38: 811-818.

- 1916. - A marsupial from the Belly River Cretaceous. With critical observations upon the affinitics of the Csetaccous mammals. Butletin of the American Muscum of Natural History 35: 477-500.
Miao D. 1988. - Skull morphology of Lambelopsalis butla (Manmalia, Multituberculata) and its implications ter mammalian evolution. Comtribations to Gealog, University of Whoming, Special Paper 4: $1-104$.
- 1993. - Cranial morphology and multituberculate relationships: 63-74, in Szalay F. S.. Novacek M. J. \& McKenna M. C. (eds), Mammal Pbylogeny. Volume I. Springer-Verlag. New York.
Muizon C de. 1992. - La fauna de mamiferos de Tjupampa (Paleoceno inferior, Formacion Santa Lucia) Bolivia. Revista técnied de Yacimanemos Petralifiras Fiseades de Bolinia 12 (3-4, December 1991): 575-624.
- 1994. - A new carnivorous marsupial from the Palacocene of Bolivia and the problemo of marsupial monoplyyy. Nature 370: 208-211.
Muizon C. de 发 Briso I. M. 1993. - l.c hassin calcaire de Sao José de Itaborar (Rio de Janeiro. Brésil): ses relations fauniques avec le site de Tiupampa (Cochabamba, Bolivie). Annales de Pathontologie 79 (3): 233-268.
Muizon C. de \& Lange-Badré B. 1997 - Carnivorous dental adaptation in tribosphenid mammals and phylogenetical reconstruction. Lethatia 30 351-366.
Muizon C. de \& Marshall L. G. 1992. Alcidedorbignya inopinata (Mammalia: Panoodonta) frum the Early Palacocene of Bolivia: phylogenetic and paleobingengraphic implications. Journal of Paleontology 66 (3): 499-520.
Muizon C. de, Gayet M., Lavenu A., Marshall L. G., Sigé B. \& Villarrod C. 1983. - Late Cretaceous vertcbrates. including mammals, from Tiupampa, sourhentral Belivia. Geobios, Lyon 16 (6): $745-753$.
Muizon C. de, Marshall L., G. \&e Sige B. 1984. - The mammal Gauna from the El Molino Formation (Late Cretaceous-Mazstrichtian) at Tiuparnpa, southcentral Bolivia. Bullezin dut Muséum national d'Histoire naturelle, Paris, série 4, C $6(4): 315-327$.
Muizon C. de, Cifelli R. L. \& Cespedes Paz R. 1997 - The origin of the dog-like borhyaenoid
marsupials of South America. Nature 389: 486-489.
Novak R. M. \& Paradiso J. L. 1983. - Mammals of the World. Volume 1: 1-644. The Johns Hopkins Press, Ballintore
Osgood W. H. 1921. - A monographic study of the American marsupial Caenolestes. Firld Mnsewn of Natural History, Zoology seriss 14: 1-156.
Owen R. 1868. - On the anatomy of Vertebrates. Vol. III, Mammals. Longmams, Green and Co. London.
Parker W. K. 1886. - On the structure and development of the skull in the Mammalia, Phitosapbical Transacrions of ibe Rayal Sericty of Lemdan 176: 1-275.
Pascual R. \& Oriz Jaureguizar E. 1990 - Evolving climares and mammal faumas in Cenozoic South America. Jommal af'Human Eirolation 19: 23-60.
- 1992. - El ciclo faunístico cochabambino (Palcoceno remprano): su incidencia en la historia biogeográfica de los maniferos sudamericanos. Revista récnice de YPFB, Santa Cruz 12 (3-4, Dic. 1991): 559-574.
Pattersan B. 1965. - The auditory region of the borhyaenid marsupial Cladosicis. Breviora 217: 1-9.
Petter t. © Hoffincucr R. 1983, - Les Marsuphax du Déseadien (Oligocene inferienr) de Salla (Bolivic) Apalles de Palemmutugie 69: 175-234,
Prasad G, V', R. \& Ciodinoe M. 199.'. - Eutherian tarsal bones from the late Creaceous of India. Journal of Paleontintogy is (i): 802-902.
Presley R. 1981 . - Alisphenosid equivalents in placenrals, marsupials, monotremes and fossils. Nature 294: 668-670.
- 1979. - The promitive course of the internal caronid attery in mammals. Acta Anatomica 103: 238-244.
Presley R. \& Stect 1:. L. D. 1976. - On the homology of the alisphenoid, Jotumal of Antanmy 121: 441-459.
Reig O. A., Kirsch J. A. W. Ke Marshall I.. G. 1987. - Systematic relationships of the living and Mesozoic opossum-like marsupials (suburder Didelphimorphia), with comments on the classification of these and of the Cretaceus and Palacocene New World and European metatherians: 1-89, in Archer M. (ed.) Posemms and Opossumas. Royal Zirdegical Socicty of New South Wales, Sydney, Aussralia.
Riggs E. 1934. - A new marsupial sather-tooth from the Pliocene of Argenrina and its relationships ro orher South American predacious marsupials. Transactions of the American Phelosaphical Society. new scrics 24:1-32.
Roberts D. 1974. - Structure and function of the printate stapula: 171-200, in Jenkins $1:$. A. (ed.), Primate I.mmmotion. Academic Ptess. New York.
Rougicr C. W., Wiblu J. R. \&e Hopson J. 1992. Reconstruction of the cranial vessels in the Early

Cretaceuus mammal Vincelestes newyeniunus: implications for the cuolution of the mammalian cranial vascular system. fournal of Vertebrate Paleonolugy 12 (2): 188-216.
Sempere T., "Burler R. L. \& Marshall L. G. 1997. Surarigraphy and chronology of the Upper Crefaccous-lower Paleogene strata in Bolivia and norhtwest Argentina. Genlagical Somiety of America, Bulletin 1(1) (6): 709-727.
Sigogneau-Russel| D. 1992. - Hypomylor phelizoni nov, yen nove sp, ane és.ape prétece de lévolution de la molaire tribosphénique (Crétacé bas.l du Maroc). Gemhine $25: 389-393$.
Simpson G. G. 1970. - The Argyrolagidae, extinct South American marsupials. Bulletin of the Mnseun of Comparative Zonlogy 139: 1-86.
Sinclair W. J. 1906. - Mammalia of the Sansa Cruz beds: Marsupialia. Repares of the Princton Unversity Fisheditions tu Daduania 4: 3.33-460,
Stijper E. J. 1946. - Comparative hiologi-anamical investigations on the verectral columit and spinal musculature of mammals. Verhantelingen der Kominklijke Nederlandse Akndemie men Wetenschappen. Apfling Nirmurkunde, Amsterdati 42: 1-128.
Soria M. F. 198\%. - Noopperna: un nuevo onden de mamiferos ungulados cogenos de América del Sur. Parte II. Natandaps prubelli gen, el aps nov. (Nombychopidae fam. nov.) de la Formación Río L.oro (Paleoceno medio), Provincia de "lucumán. Argentima. Amghniatm 25(3): 259-272.
Szalay P. S. 1984. - Arhorealiey: is ir homologous in meratherian and curherian rammals? Fophtionary Butogy 18 (6): 215-258.

- 1994. - Evolutionary bistary of the marsupials and an analysis of ostenlugical characters. Cambridge University P'ross, New York 481 p.
Saalay T. S. \& Tiofimov B. A 1996. - The mongolian Iare Crencons Asiatherium and the early phylogeny and pateobiogeography of Metatheria. Journal of Vertebrate falientolugy 76 (3): 474-509.
Tardieu C. 1983. - L.'artisulation du genou. Analyse morphofonctionnelle dues les primato, application aux hominidac fossiles. Cidtrees de Palfedmbropalugie, édirions du CNRS, Paris: 1-108.
T'rofimor B. A. \& Szalay F. S. 1994. - New Crelaccous marstipial from Mongolia and the early radlation al Metatheria. Proceding of ohe Nasional Academy of Sciences, USA 91: 1269-12573.
Tyndale-Biscoe C. H. 1973. - Life of Marsupials. American Elsevier P'ublishing Co.. New York, 254 p.
Van der Klauw C. J. 1913. - The auditory bulla in some fossil mammals. Bulletin of the American Musean of Natmal Hisory 62: 1-352.
Van Valen L. 1988. - Paheocene dinosaurs or Cretaceous ungulates in Sourh America. Peolutionary Monographs 11: 1-79.
Wible J. R. 1990. Tarusals of Late Crecaceous marsupials from North America and a cladistic
analysis of the petrosal in therian mammals. Journal of Vertebrate Paleontology 10 (2): 183-205.
Wible J. R. \& Hopson J. A. 1993. - Basicranial evidence for early mammal phylogeny: 45-62, in Szalay F. S., Novacek M. J. \& McKenna M. C. (eds), Mammal Phylogeny. Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and Marsupials. Springer-Verlag, New York.
Winge H. 1941. - The Interrelationships of the Mammalian Genera: 1-418. Volume I. Translated
from Danish by E. Deichmann \& G. M. Allen. C. A. Reitzel Forlag, Copenhagen.

Woodward M. F. 1893. - Contribution to the study of mammalian dentition. Part I. On the development of the teeth of the Macropodidae. Proceeding of the Zoological Society of London 1893: 45-473.
Wroe S. 1997. - A reexamination of proposed mor-phology-based synapomorphies for the Families of Dasyuromorphia (Marsupialia). I. Dasyuridae. Journal of Mammalian Evolution 4: 19-52.

Submitted for publication on 25 January 1997; accepted on 2 October 1997.

APPENDIX

Following are the measurements of Mayulestes ferox in millimeters. e, estimated; -, measurement not available.

Anteroposterior length from the tip of the right premaxilla to the lip of the right condyle Anteroposterior length from the tip of the left premaxilla to the tip of the left condyle Bizygomatic width	53.4
Width between the lacrimal foramina at the anterior extremity of the orbits Width of the iostrum at the anterior opening of the infraorbital canal	52.5
Width of the rostrum between the supraorbital humps (supraorbital processes)	13.5
Minimum width of the inlerorbital bridge Length of the right temporal fossa	12.8
Length of the left temporal fossa	
Maximumi width of the nasals	

$\left.\begin{array}{ll}\text { Height of the dentary below talonid of } \mathrm{m} 1 & 7.3 \\ \text { Height of the dentary below talonid of } \mathrm{m} 2\end{array}\right)$

Measurements of the skull: since the crushing of the skull is essentially dorsoventral, the actual horizontal distortion is probably not very important. Therefore, the following measurements represent a reasonable approximation of the actual dimensions of the skull.

[^0]| | $\begin{aligned} & 11 \\ & \mathrm{~L} \end{aligned}$ | W | $\begin{aligned} & 12 \\ & \mathrm{~L} \end{aligned}$ | W | $\begin{aligned} & \text { I3 } \\ & \mathrm{L} \end{aligned}$ | W | $\stackrel{14}{\mathrm{~L}}$ | W | $\begin{aligned} & \text { I5 } \\ & \text { L } \end{aligned}$ | W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Upper | | | | | | | | | | |
| Right | 0.6 | 0.6 | 0.5 | 0.5 | - | - | - | - | - | - |
| Upper | | | | | | | | | | |
| Left | - | - | - | - | 0.7 | 0.7 | 0.7 | 0.5 | 0.6 | 0.4 |
| Lower | | | | | | | | | | |
| Right | 0.2 | 0.4 | 0.3 | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | | |

Measurements of the incisors.

	P1r	P2r	P3 I	p1r	p3 1
L	1.12	2.2	2.6	1.3	2.2
W	0.78	1	1.4	0.6	1.2
H	0.87	1.5	2.5	0.9	2.6

Measurements of the premolars.

	M1r	M2r	M3r	M4r	m1r	m2r	$\mathbf{m 3 r}$	$\mathbf{m 4 1}$
1	2.95	3.12	2.96	2.39	2.86	3.06	3.36	3.72
2	3.66	4.08	4.55	1.83	1.11	1.21	1.43	1.2
3	2.48	3.27	3.72	3.68	1,24	1.84	1.87	1.98
4	2.86	3.09	2.89	1.95	1.74	2.2	2.09	2.34
5	3.29	$391 e$	4.29	3.39	1.89	1.91	1.87	2.03
6	1.31	1.42	1.41	0.83	1.19	1.92	1.9	2.07
7	1.46	1.48	1.48	1.02	-	-	3.32	3.54
8	2.1	1.98	1.85	1.27	-	-	1.61	1.48
9	0.99	1.08	1.19	-	-	-	1.6	2.03
10	2.72	3.55	3.5	-	-	-	1.78	1.96
11	1.44	1.47	1.73	-	0.91	0.89	1.34	1.08

Maximum length of the neural arch	5.5
Maximum width of the neural canal Maximum width between the lateral borders of the occipital facets	6
Maximum width of the intercentrum 12.5 Maximum height of the left occipital facet 6 Maximum width of the left occipital facet	4.2
Maximum height of the left axoidian face Maximum width of the left axoidian facet	4.3

Maximum length of the neural spine Maximum ventral length Maximum height of the axis at the level of the posteroventral border of the centrum	13
Maximum width between lateral borders	9.5
of the atlotdian facets	11
Posterior width of the centrum	8.2
Posterior height of the centrum	4.7
Width between the postzygapophyses	3
Ventral length of the dens	7
Height of the dens	2.9
Width of the dens	1.5

| | CV?3 | CV?5 |
| :--- | :---: | :---: | :---: |
| Length of the centrum | 4 | 3.7 |
| Anterior width of the centrum | - | 4.5 |
| Posterior width of the centrum | 4.6 | 4.3 |
| Anterior height of the centrum | - | 2 |
| Posterior height of the centrum | 2 | 2 |
| Width between prezygapophyses | - | 9 |

Measurements of CV?3 and CV?5.

	T?1	T?12	T?13
Length of the centrum	4.2	6.2	6.4
Anterior width of the centrum	4.5	4.6	4.8
Anterior height of the centrum	2.7	2.3	3
Posterior width of the centrum	4.2	4.7	8
Posterior height of the centrum	2.4	2.5	-
Width between transverse processes	11e	-	-
Width between anapophyses	-	7.1	6.7
Width between prezygapophyses	7.3	5.7	-
Width between postzygapophyses	6	4.1	-
Height at level of the spine	-	7.2	7.2
Length of the spine at apex	-	3	2.9

Measurements of thoracic vertebrae.

	L1	L2	L3	L4	L5
Length of the centrum	7	7.4	8.2	9	7.4
Anterior width of the centrum	5.7	4.8	5.2	5.2	5.4
Anterior height of the centrum	-	3.4	2.8	-	3.7
Posterior width of the centrum	4.3	4.8	5.7	5.5	6
Posterior height of the centrum	3	3.2	2.8	3.2	3.7
Width between trans- verse processes	$6.6 e$	-	-	-	13.7
Length between anapophyses	-	$7 e$	-	-	-
Width between prezygapophyses Width between	6.7	7.5	-	-	9
postzygapophyses Height of vertebra at level of spine	5.7	5.9	5.9	-	7.8
Length of the spine at apex	3.4	3	2	-	2.3

	C? 1	C?3	C?8	C?9
Length of the centrum	5	6.7	16	16
Anterior width of the centrum	4.3	3.5	5.4	4.8
Anterior height of the centrum	3.5	3.5	3	3.3
Posterior width of the centrum	5	3.5	5.4	5
Posterior height of the centrum	3.3	3.6	3.7	3
Width between anterior transverse processes	-	-	7.5	7.5
Width between posterior transverse processes	-	-	7.3	7
Width between prezygapophyses	6	6	4.8	4
Width between postzygapophyses	-	3 e	2.5	2.6

Maximum length of the infraspinatus fossa, parallel to the spine	25.08
Maximum anteroposterior length	16.97
parallel to the spine	5.63
Length of the glenoid cavity Width of the glenoid cavity	3.77
Maximum anteroposterior length of the acromion	6.14
Proximodistal length of the acromion	9.65
Maximum height of the spine	

Measurement of the caudal vertebrae.

Length	32.54
Transverse width of the head	4.78
Anteroposterior length of the head	4.89
Length of deltoid crest	17.9
Transverse width of proximal extremity	9.91
Maximum width of the distal articular	
surface in anterior view	6.48
Width of the capitulum in anterior view	3.36
Height of the capitulum in anterior view	1.97
Width of the trochlea in anterior view	1.66 e
Height of the trochlea in anterior view	1.75
Height of the capitulum in distal view	3.21
Height of the trochlea in distal view Depth of the trochlea in posterior view Angle between anterior and posterior edge of trochlea in distal view	2.66
	0.89

Measurements of the left humerus.

Length Length from apex of olecranon to coronoid apophysis	37.74
Length of olecranon from apex to proximal extremity of greater slgmoid cavity in medial view	10.5
Maximum anterior length of the olecranon Proximodistal length of greater sigmoid cavity in medial view	12
Width of proxImal edge of the sigmoid cavity	6.72
Width of olecranon at apex	3.53
Width at the level of the coronoid apophysis	3.1 .68
Anteroposterlor length at proximal edge of sigmoid cavity	3.7
Length of medial branch of proximal edge of greater sigmoid cavity	2.58
Length of lateral branch of proximal edge of greater sigmoid cavity	1.48
Angle between olecranon and shaft in anterior view	149°
Angle between olecranon and shaft	
in lateral view	

[^1]| Length | 29.46 |
| :--- | :---: |
| Width of proximal epiphysis | 3.96 |
| Length of proximal epiphysis | - |
| Length between proximal end and | 5.02 |
| distal border of bicipital tuberosity | 4.35 |
| Width of distal epiphysis | 2.74 |
| Length of distal epiphysis | |

Length	7
Width of diaphysis at mid-length	0.9
Anteroposterior length of diaphysis	
at mid-length	1.8
Width of distal epiphysis	2.6
Anteroposterior length of distal epiphysis	1.4

Length	42.57
Length of the ilium from anterior extremity to centre of acetabulum	25.2
Dorsoventral breadth of iliac wing	7.17
Anteroposterior diameter of acetabulum Maximum dorsoventral diameter of	6.6
acetabulum	6.1
Length from posterior border of sciatic spine to posterior border of ischium	11.95

Length Proximal transverse width Length from tip of greater trochanter to ventral border of head	40.77
Length from tip of greater trochanter to distal end of lesser trochanter	10.23
Mediolateral length of the head in posterior view	4.13
Anteroposterior length of the head in proximal view	10.36
Length from tip of greater trochanter to distal end of trochanteric fossa	6.08
Transverse diameter at mid-length of the shaft	3.84
Anteroposterior diameter at mid-length of the shaft	5.48
Transverse width of distal extremity Anteroposterior length of lateral distal condyle	3.66
Width of left lateral distal condyle in posterior view Width of right lateral distal condyle in posterior view	2.76
Width of right medial distal condyle in posterior view	6.54
Height of right lateral condyle	
in posterior view	

Length	40.68
Proximal transverse width	7.5
Proximal anteroposterior length	5.2
Width of the lateral proximal condyle	3.18
Width of the medial proximal condyle	2.59
Anteroposterior length of the lateral proximal condyle	3.17
Anteroposterior length of the medial proximal condyle	
Distal transverse width Distal anteroposterior length	4.55
Proximodistal length of malleolus Width of the malleolus Width of astragalar facet from base of malleolus to lateral edge	3.1
Angle between the flexion axis	1.84
of the knee (ca.greatest width of the proximal epiphysis) and the plane of the malleolus	2.18

Distal transverse width
4.5

Distal anteroposterior length

Measurements of the fibula.

Length	9.5
Width of the tuber at mid-length	1.8
Height of the tuber at mid-length	3.2
Proximodistal length of ectal facet	3.3
Transverse width of ectal facet	1.8
Maximum distal width	5.5
Width of cuboid facet	3.3
Dorsoplantar length of cuboid facet	2.7

	Mt?III	MtIV
Length	13.4	12.1
Proximal width	2.2	2
Distal width	2.8	2.7

Measurements of the calcaneum.

[^0]: Measurements of the dentary.

[^1]: Measurements of the ulna

